Adaptive Regression Model Construction Based on the Functional Quality Analysis of the Sequence Segment Processing
- Authors: Lebedev I.S1
-
Affiliations:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
- Issue: Vol 24, No 2 (2025)
- Pages: 363-394
- Section: Mathematical modeling and applied mathematics
- URL: https://journal-vniispk.ru/2713-3192/article/view/289691
- DOI: https://doi.org/10.15622/ia.24.2.1
- ID: 289691
Cite item
Full Text
Abstract
About the authors
I. S Lebedev
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: isl_box@mail.ru
14-th Line V.O. 39
References
- Chen H.Y., Chen C. Evaluation of Calibration Equations by Using Regression Analysis: An Example of Chemical Analysis // Sensors. 2022. vol. 22. no. 2. doi: 10.3390/s22020447.
- Schober P., Vetter T.R. Segmented Regression in an Interrupted Time Series Study Design // Anesthesia and Analgesia. 2021. vol. 132. no. 3. pp. 696–697.
- Bozpolat E. Investigation of the self-regulated learning strategies of students from the faculty of education using ordinal logistic regression analysis // Educational Sciences: Theory & Practice. 2016. no. 16(1). pp. 301–318.
- Jarantow S.W., Pisors E.D., Chiu M.L. Introduction to the use of Linear and Nonlinear Regression Analysis in Quantitative Biological Assays // Current Protocols. 2023. no. 3. doi: 10.1002/cpz1.801.
- Britzger D. The Linear Template Fit // The European Physical Journal C. 2022. vol. 82(8). doi: 10.1140/epjc/s10052-022-10581-w.
- Perperoglou A., Sauerbrei W., Abrahamowicz M., Schmid M. A review of spline function procedures in R // BMC Medical Research Methodology. 2019. vol. 19. pp. 1–16.
- Ren J., Tapert S., Fan C.C., Thompson W.K. A semi-parametric Bayesian model for semi-continuous longitudinal data // Statistics in Medicine. 2022. vol. 41. no. 13. pp. 2354–2374.
- Taye M.M. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions // Computation. 2023. vol. 11. no. 3. doi: 10.3390/computation11030052.
- Колмогоров А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиции непрерывных функций одного переменного // Доклады АН СССР. 1957. Т. 114. № 5. С. 953–956.
- Girosi F., Poggio T. Representation Properties of Networks: Kolmogorov’s Theorem is Irrelevant. Neural Computation. 1989. vol. 4. no. 1. pp. 465–469.
- Parhi R., Nowak R.D. Banach Space Representer Theorems for Neural Networks and Ridge Splines // Journal of Machine Learning Research. 2021. vol. 22(1). pp. 1960–1999.
- Marques H.O., Swersky L., Sander J., Campello R.J., Zimek A. On the evaluation of outlier detection and one-class classification: a comparative study of algorithms, model selection, and ensembles // Data Mining and Knowledge Discovery. 2023. vol. 37. no. 4. pp. 1473–1517.
- Li Y., Guo X., Lin W., Zhong M., Li Q., Liu Z., Zhong W., Zhu Z. Learning dynamic user interest sequence in knowledge graphs for click-through rate prediction // IEEE Transactions on Knowledge and Data Engineering. 2023. vol. 35. no. 1. pp. 647–657.
- Rinaldo A., Wang D., Wen Q., Willett R., Yu Y. Localizing changes in highdimensional regression models // The 24th International Conference on Artificial Intelligence and Statistics. 2021. pp. 2089–2097.
- Aue A., Rice G., Sönmez O. Detecting and dating structural breaks in functional data without dimension reduction // Journal of the Royal Statistical Society. Series B, Statistical Methodology. 2018. vol. 80. no. 3. pp. 509–529.
- Datta A., Zou H., Banerjee S. Bayesian high-dimensional regression for change point analysis // Statistics and its Interface. 2019. vol. 12. no. 2. pp. 253–264. doi: 10.4310/SII.2019.v12.n2.a6.
- Melnyk I., Banerjee A. A spectral algorithm for inference in hidden semi-Markov models // Journal of Machine Learning Research. 2017. vol. 18. no. 35. pp. 1–39.
- Haynes K., Fearnhead P., Eckley I.A. A computationally efficient nonparametric approach for changepoint detection // Statistics and Computing. 2017. vol. 27. pp. 1293–1305. doi: 10.1007/s11222-016-9687-5.
- Muggeo V. Estimating regression models with unknown break-points // Statistics in Medicine. 2003. vol. 22(19). pp. 3055–3071.
- Lu K.P., Chang S.T. A fuzzy classification approach to piecewise regression models // Applied Soft Computing Journal. 2018. vol. 69. pp. 671–688.
- Bardwell L., Fearnhead P. Bayesian detection of abnormal segments in multiple time series // Bayesian Analysis. 2017. vol. 12. no. 1. pp. 193–218.
- Huang J., Chen P., Lu L., Deng Y., Zou Q. WCDForest: a weighted cascade deep forest model toward the classification tasks // Applied Intelligence, 2023. vol. 53. no. 23. pp. 29169–29182. doi: 10.1007/s10489-023-04794-z.
- Tong W., Wang Y., Liu D. An Adaptive Clustering Algorithm Based on Local-Density Peaks for Imbalanced Data Without Parameters // IEEE Transactions on Knowledge and Data Engineering. 2023. vol. 35. no. 4. pp. 3419–3432.
- Lu K.P., Chang S.T. Fuzzy maximum likelihood change-point algorithms for identifying the time of shifts in process data // Neural Computing and Applications. 2019. vol. 31. pp. 2431–2446.
- Nevendra M., Singh P. Software defect prediction using deep learning // Acta Polytechnica Hungarica. 2021. vol. 18. no. 10. pp. 173–189.
- Tallman E., West M. Bayesian predictive decision synthesis // Journal of the Royal Statistical Society. Series B: Statistical Methodology. 2024. vol. 86. no. 2. pp. 340–363.
- Korkas K., Fryzlewicz P. Multiple change-point detection for non-stationary time series using wild binary segmentation. Statistica Sinica. 2017. vol. 27. pp. 287–311. doi: 10.5705/ss.202015.0262.
- Silva R.P., Zarpelão B.B., Cano A., Junior S.B. Time Series Segmentation Based on Stationarity Analysis to Improve New Samples Prediction // Sensors. 2021. vol. 21(21). doi: 10.3390/s21217333.
- Barzegar V., Laflamme S., Hu C., Dodson J. Multi-Time Resolution Ensemble LSTMs for Enhanced Feature Extraction in High-Rate Time Series // Sensors. 2021. vol. 21(6). doi: 10.3390/s21061954.
- Si S., Zhao J., Cai Z., Dui H. Recent advances in system reliability optimization driven by importance measures // Frontiers of Engineering Management. 2020. vol. 7. no. 3. pp. 335–358.
- Xu S., Song Y., Hao X. A Comparative Study of Shallow Machine Learning Models and Deep Learning Models for Landslide Susceptibility Assessment Based on Imbalanced Data // Forests. 2022. vol. 13. no. 11. doi: 10.3390/f13111908.
- Лебедев И.С. Адаптивное применение моделей машинного обучения на отдельных сегментах выборки в задачах регрессии и классификации // Информационно-управляющие системы. 2022. № 3(118). C. 20–30.
- Тихонов Д.Д., Лебедев И.С. Метод формирования сегментов информационной последовательности с использованием функционала качества моделей обработки // Научно-технический вестник информационных технологий, механики и оптики. 2024. Т. 24. № 3. С. 474–482.
- Lebedev I.S., Sukhoparov M.E. Adaptive Learning and Integrated Use of Information Flow Forecasting Methods // Emerging Science Journal. 2023. vol. 7. no. 3. pp. 704–723.
- Osipov V., Nikiforov V., Zhukova N., Miloserdov D. Urban traffic flows forecasting by recurrent neural networks with spiral structures of layers // Neural Computing and Applications. 2020. vol. 32. no. 18. pp. 14885–14897.
- Lebedev I.S., Sukhoparov M.E. Improving the Quality Indicators of Multilevel Data Sampling Processing Models Based on Unsupervised Clustering // Emerging Science Journal. 2024. vol. 8. no. 1. pp. 355–371.
- Jin H., Yin G., Yuan B., Jiang F. Bayesian hierarchical model for change point detection in multivariate sequences // Technometrics. 2022. vol. 64. no. 2. pp. 177–186.
- Power Supply dataset. URL: http://www.cse.fau.edu/~xqzhu/stream.html (дата обращения: 16.05.2024).
- Lu K.-P., Chang S.-T. An Advanced Segmentation Approach to Piecewise Regression Models // Mathematics. 2023. vol. 11(24). doi: 10.3390/math11244959.
- Energy generation dataset. URL: https://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-and-weather/data?select=energy_dataset.csv (дата обращения: 16.05.2024).
- Pima Indians Diabetes Database URL: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database (дата обращения: 16.05.2024).
- E-Commerce Data URL: https://www.kaggle.com/datasets/carrie1/ecommerce-data (дата обращения: 16.05.2024).
Supplementary files
