An AudioCodec Based on the Perceptual Equality between the Original and Restored Audio Signals

封面

如何引用文章

全文:

详细

A method for lossy audio data compression (AudioCodec) is presented. It allows for improving objective quality of the restored audio signal by 25% at a bitrate of 390 kbps and 55% at a bitrate of 64 kbps compared to the AAC MPEG-4 format. The proposed method of audio data compression is based on an advanced theory of lossy audio data compression (TLAC), which is also introduced in the article. The improvement in the objective quality of the reconstructed audio signal (according to the standardized PEAQ measure) is achieved because the TLAC overcomes issues in modern lossy audio data compression methods related to the use of psychoacoustic principles of human sound perception, including after overcoming the "psychoacoustic compression limit" of the audio signal (i.e. the moment in perceptual coding when the available bit budget is insufficient to encode all spectral components with the accuracy required from a psychoacoustic perspective). This allows for achieving perceptual equality between the original and reconstructed audio signals. As an analysis of the state of the art, solutions for both lossless and lossy audio data compression, as well as those using artificial intelligence, are considered. In all modern lossy audio data compression methods, the procedure for selecting the spectral components to be preserved, as well as the permissible quantization error, is carried out through a series of highly complex procedures collectively referred to as the "psychoacoustic model of the lossy audio compression method". In a strict sense, perceptual equality between the spectra of the original and restored signals has not been proven by any research group and, therefore, cannot be guaranteed by them. Independent experts regularly publish tests demonstrating that modern audio codecs have issues with certain audio signals. The article proposes an AudioCodec based on the perceptual equality between the original and restored audio signals, which is based on the new ideas of the theory of lossy audio compression (TLAC). These ideas guarantee the achievement of perceptual equality between the original and restored audio signals at different bitrates, therefore, the AudioCodec built on its basis is free from the above-mentioned issues and, as a result, significantly outperforms modern AudioCodecs in terms of the objective quality of the restored audio signal, as measured by PEAQ.

作者简介

I. Chizhov

Huawei Russian Research Institute

Email: aproximation18@yandex.ru
Krylatskaya St. 17/2

参考

  1. Ковалгин Ю.А., Вологдин Э.И. Цифровое кодирование звуковых сигналов // М.: КОРОНА-принт, 2015. 240 с.
  2. Журавлёва Л.В., Шишурин А.И. Сравнительный анализ аудиоформатов // Технологии инженерных и информационных систем. 2022. № 2. С. 67–78.
  3. Каргин Р.И., Стаценко Л.Г. Форматы сжатия аудиоданных. Анализ и сравнение // Известия СПбГЭТУ ЛЭТИ. 2019. № 9. С. 31–37.
  4. Koops H.V., Micchi G., Quinton E. Robust lossy audio compression identification. 2024. arxiv preprint arxiv:2407.21545.
  5. Ковалгин Ю.А., Фадеева Д.Р. Исследование психоакустических моделей кодеков с компрессией цифровых аудиоданных // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2016. № 7. С. 29–38.
  6. Официальный сайт ITU. Method for objective measurements of perceived audio quality. Recommendation ITU-R BS.1387-2 (05/2023). URL: https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1387-2-202305-I!!PDF-E.pdf (дата обращения: 05.01.2025).
  7. Cormen T., Leiserson C., Rivest R., Stein C. Introduction to Algorithms 4th Edition. Cambridge, Massachusetts: The MIT Press, 2022. 1312 p.
  8. Чугунова О.В., Буслова В.Е. Архивации данных методами Шеннон-Фано и Хаффмана // Актуальные проблемы науки и техники: Сборник статей по материалам международной научно-практической конференции. Уфа: Изд. НИЦ Вестник науки, 2020. С. 58–65.
  9. Сергеев И.С., Балакирев Н.Е. Сравнение алгоритмов сжатия звуковой информации алгоритмом Хаффмана и арифметическим кодированием // Наукосфера. 2022. № 8-2. С. 31–35.
  10. Официальная страница проекта FLAC. URL: https://sourceforge.net/projects/flac/ (дата обращения: 05.01.2025).
  11. Salomon D. Data compression: the complete reference 4th Edition // London: Springer-Verlag. 2007. 1117 c.
  12. Официальный сайт Monkey’s Audio (Спецификация Monkey’s Audio). URL: https://www.monkeysaudio.com/index.html (дата обращения: 05.01.2025).
  13. Официальный сайт проекта ALAC (Спецификация Apple Lossless Audio Codec). URL: https://macosforge.github.io/alac/ (дата обращения: 05.01.2025).
  14. Официальный сайт Microsoft (Windows Media Player). URL: https://apps.microsoft.com/detail/9WZDNCRFJ3PT?hl=en-us&gl=US (дата обращения: 05.01.2025).
  15. Официальный сайт Xiph.Org фонда (Спецификация Vorbis I Xiph.Org). URL: https://xiph.org/vorbis/doc/Vorbis_I_spec.html (дата обращения: 05.01.2025).
  16. Официальный сайт Opus Interactive Audio Codec. URL: https://opus-codec.org/ (дата обращения: 05.01.2025).
  17. Петровский Ал.А., Петровский А.А. Масштабируемые аудиоречевые кодеры на основе адаптивного частотно-временного анализа звуковых сигналов // Труды СПИИРАН. 2017. № 1(50). С. 55–92. doi: 10.15622/sp.50.3.
  18. Официальный сайт ITU. Audio coding for digital broadcasting. Recommendation ITU-R BS.1196-8 (10/2019). URL: https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1196-8-201910-I!!PDF-E.pdf (дата обращения: 05.01.2025).
  19. Jenrungrot T., Chinen M., Kleijn W.B., Skoglund J., Borsos Z., Zeghidour N., Tagliasacchi M. LMcodec: a Low Bitrate Speech Codec With Causal Transformer Models // Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023. pp. 1–5. doi: 10.1109/ICASSP49357.2023.10095442.
  20. Shi H., Shimada K., Hirano M., Shibuya T., Koyama Y., Zhong Z., Takahashi S., Kawahara T., Mitsufuji Y. Diffusion-Based Speech Enhancement with Joint Generative and Predictive Decoders // IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2024. pp. 12951–12955. doi: 10.1109/ICASSP48485.2024.10448429.
  21. Kong J., Kim J., Bae J. HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis // Proceedings of the 34th Conference on Neural Information Processing Systems (NIPS). 2020. vol. 33. pp. 17022–17033.
  22. Kaneko T, Tanaka K., Kameoka H., Seki S. Istftnet: Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-Time Fourier Transform. 2022. arxiv preprint arXiv:2203.02395v1.
  23. Subramani K., Valin J.-M., Isik U., Smaragdis P., Krishnaswamy A. End-to-end LPCNet: A Neural Vocoder With Fully-Differentiable LPC Estimation // Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH). 2022. pp. 818–822.
  24. Valin J.-M., Skoglund J. LPCNet: Improving Neural Speech Synthesis Through Linear Prediction // Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. pp. 5891–5895. doi: 10.1109/ICASSP.2019.8682804.
  25. Valin J.-M., Isik U., Smaragdis P., Krishnaswamy A. Neural Speech Synthesis on a Shoestring: Improving the Efficiency of LPCNet // Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2022. pp. 8437–8441.
  26. Valin J.-M., Buthe J., Mustafa A. Low-Bitrate Redundancy Coding of Speech Using a Rate-distortion-optimized Variational Autoencoder // Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023. pp. 1–5. doi: 10.1109/ICASSP49357.2023.10096528.
  27. Zeghidour N., Luebs A., Omran A., Skoglund J., Tagliasacchi M. SoundStream: An End-to-End Neural Audio Codec // Proceedings of the IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2021. vol. 30. pp. 495–507.
  28. Du Z., Zhang S., Hu K., Zheng S. FunCodec: A Fundamental, Reproducible and Integrable Open-Source Toolkit for Neural Speech Codec. 2023. arxiv preprint arXiv:2309.07405v1.
  29. Defossez A., Copet J., Synnaeve G., Adi Y. Funcodec: High Fidelity Neural Audio Compression. 2022. arxiv preprint arXiv:2210.13438v1.
  30. Демо-сайт проекта High Fidelity Neural Audio Compression (EnCodec). URL: https://ai.honu.io/papers/encodec/samples.html (дата обращения: 18.10.2024).
  31. Yin D., Luo C., Xiong Z., Zeng W. PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network. 2019. arxiv preprint arXiv:1911.04697v1.
  32. Рогозинский Г.Г. Перцепционное сжатие звука с использованием вейвлетных пакетов // Диссертация СПбГУКиТ. 2010.
  33. Zwicker E., Fastl H. Psychoacoustics: Facts and Models // Springer-Verlag, Berlin Heidelberg. 1990.
  34. Официальный сайт ITU. General methods for the subjective assessment of sound quality. Recommendation ITU-R BS. 1284-2 (01/2019). URL: https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1284-2-201901-I!!PDF-E.pdf (дата обращения: 05.01.2025).

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».