Building Predictive Smell Models for Virtual Reality Environments
- Authors: Hung N.V1, Quan N.A1, Tan N.1, Hai T.T2, Trung D.K1, Nam L.M1, Loan B.T1, Nga N.T1
-
Affiliations:
- East Asia University of Technology
- Hanoi Open University
- Issue: Vol 24, No 2 (2025)
- Pages: 556-582
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/289697
- DOI: https://doi.org/10.15622/ia.24.2.7
- ID: 289697
Cite item
Full Text
Abstract
In a sensory-rich environment, human experiences are shaped by the complex interplay of multiple senses. However, digital interactions predominantly engage visual and auditory modalities, leaving other sensory channels, such as olfaction, largely unutilized. Virtual Reality (VR) technology holds significant potential for addressing this limitation by incorporating a wider range of sensory inputs to create more immersive experiences. This study introduces a novel approach for integrating olfactory stimuli into VR environments through the development of predictive odor models, termed SPRF (Sensory Predictive Response Framework). The objective is to enhance the sensory dimension of VR by tailoring scent stimuli to specific content and context with the collection of information about the location of scent sources and their identification through features to serve to reproduce them in the space of the VR environment, thereby enriching user engagement and immersion. Additionally, the research investigates the influence of various scent-related factors on user perception and behavior in VR, aiming to develop predictive models optimized for olfactory integration. Empirical evaluations demonstrate that the SPRF model achieves superior performance, with an accuracy of 98.13%, significantly outperforming conventional models such as Convolutional Neural Networks (CNN, 79.46%), Long Short-Term Memory (LSTM, 80.37%), and Support Vector Machines (SVM, 85.24%). Additionally, SPRF delivers notable improvements in F1-scores (13.05%-21.38%) and accuracy (12.89%-18.67%) compared to these alternatives. These findings highlight the efficacy of SPRF in advancing olfactory integration within VR, offering actionable insights for the design of multisensory digital environments.
Keywords
About the authors
N. V Hung
East Asia University of Technology
Author for correspondence.
Email: hungnv@eaut.edu.vn
Ky Phu – Ky Anh -
N. A Quan
East Asia University of Technology
Email: anhq46724@gmail.com
Duong Ha – Gia Lam -
N. Tan
East Asia University of Technology
Email: tan25102000@gmail.com
Trung Dung – Tien Lu -
T. T Hai
Hanoi Open University
Email: haitt@hou.edu.vn
Nguyen Hien Street, Hai Ba Trung District -
D. K Trung
East Asia University of Technology
Email: trungdk@eaut.edu.vn
Bo De – Long Bien 14
L. M Nam
East Asia University of Technology
Email: namlm@eaut.edu.vn
Phuong Trung – Thanh Oai -
B. T Loan
East Asia University of Technology
Email: loanbt@eaut.edu.vn
Long Bien -
N. T Nga
East Asia University of Technology
Email: ngantt@eaut.edu.vn
Ta Thanh Oai - Thanh Tri -
References
- Nikolic D., Whyte J. Visualizing a new sustainable world: Toward the next generation of virtual reality in the built environment. Buildings. 2021. vol. 11. no. 11(11). doi: 10.3390/buildings11110546.
- Felten P., Lambert L.M. Relationship-rich education: How human connections drive success in college. Johns Hopkins University Press, 2020. 208 p.
- Flavian C., Ibanez-Sanchez S., Orus C. The influence of scent on virtual reality experiences: The role of aroma-content congruence. Journal of Business Research. 2021. vol. 123. pp. 289–301. doi: 10.1016/j.jbusres.2020.09.036.
- Petit O., Velasco C., Spence C. Digital sensory marketing: Integrating new technologies into multisensory online experience. Journal of Interactive Marketing. 2019. vol. 45. pp. 42–61. doi: 10.1016/j.intmar.2018.07.004.
- Hung N.V., Thinh P.H., Thanh N.H., Lam T.T., Hien T.T., Ninh V.T., Huong T.T. Lvsum-optimized live 360 degree video streaming in unicast and multicast over mobile networks. IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2023. pp. 29–34. doi: 10.1109/CICN59264.2023.10402136.
- Hung N.V., Tien B.D., Anh T.T.T., Nam P.N., Huong T.T. An efficient approach to terminate 360-video stream on http/3. American Institute of Physics Conference Proceedings. 2023. vol. 2909. no. 1. doi: 10.1063/5.0182042.
- Zeynali A., Hajiesmaili M.H., Sitaraman R.K. Bola360: Near-optimal view and bitrate adaptation for 360-degree video streaming. Proceedings of the 15th ACM Multimedia Systems Conference (MMSys). 2024. pp. 12–22. doi: 10.1145/3625468.3647607.
- Chiariotti F. A survey on 360-degree video: Coding, quality of experience and streaming. Computer Communications. 2021. vol. 177. pp. 133–155. doi: 10.1016/j.comcom.2021.06.029.
- Nguyen H., Dao T.N., Pham N.S., Dang T.L., Nguyen T.D., Truong T.H. An accurate viewport estimation method for 360 video streaming using deep learning. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems. 2022. vol. 9. no. 4. doi: 10.4108/eetinis.v9i4.2218.
- Hung N.V., Dat P., Tan N., Quan N., Trang L.T.H., Nam L. Heverl – viewport estimation using reinforcement learning for 360-degree video streaming. Informatics and Automation. 2025. vol. 24(1). pp. 302–328. doi: 10.15622/ia.24.1.11.
- Nguyen V.H., Bui D.T., Tran T.L., Truong C.T., Truong T.H. Scalable and resilient 360-degree-video adaptive streaming over HTTP/2 against sudden network drops. Computer Communications. 2024. vol. 216. pp. 1–15. doi: 10.1016/j.comcom.2024.01.001.
- Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991. vol. 65(1). pp. 175–187. doi: 10.1016/0092-8674(91)90418-X.
- Yang Y., Jing D., Zhao L. Computational fluid dynamics modeling of reactive multiphase flow for suspended photocatalytic water splitting of hydrogen production system. Applied Thermal Engineering. 2020. vol. 173. doi: 10.1016/j.applthermaleng.2020.115220.
- Song R., Keller A.A., Suh S. Rapid life-cycle impact screening using artificial neural networks. Environmental Science & Technology. 2017. vol. 51. no. 18. pp. 10777–10785. doi: 10.1021/acs.est.7b02862.
- Lotsch J., Kringel D., Hummel T. Machine learning in human olfactory research. Chemical senses. 2019. vol. 44. no. 1. pp. 11–22. doi: 10.1093/chemse/bjy067.
- Narumi T., Kajinami T., Nishizaka S., Tanikawa T., Hirose M. Pseudo-gustatory display system based on cross-modal integration of vision, olfaction and gustation. IEEE Virtual Reality Conference. IEEE, 2011. pp. 127–130. doi: 10.1109/VR.2011.5759450.
- Niedenthal S., Fredborg W., Lunden P., Ehrndal M., Olofsson J.K. A graspable olfactory display for virtual reality. International Journal of Human-Computer Studies. 2023. vol. 169. doi: 10.1016/j.ijhcs.2022.102928.
- Velasco C., Vargas J., Petit O. Multisensory experiences and technology in the context of wine experiences. Journal of Wine Research. 2024. vol. 35. no. 2. pp. 85–100. doi: 10.1080/09571264.2024.2310304.
- Wilson A. Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath. Journal of Forensic Science & Criminology. 2014. vol. 1. no. 1. pp. 1–21.
- Chacko R., Jain D., Patwardhan M., Puri A., Karande S., Rai B. Data based predictive models for odor perception. Scientific reports. 2020. vol. 10. doi: 10.1038/s41598-020-73978-1.
- Dzialowski A.R., Smith V.H., Huggins D.G., Denoyelles F., Lim N.-C., Baker D.S., Beury J.H. Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Research. 2009. vol. 43. no. 11. pp. 2829–2840. doi: 10.1016/j.watres.2009.04.001.
- Qi M., Chen J., Sun X., Deng X., Niu Y., Xie P. Development of models for predicting the predominant taste and odor compounds in Taihu Lake, China. PloS one. 2012. vol. 7(12). doi: 10.1371/annotation/c86cbb15-dbb2-4fe8-b2fa-35604b6c4887.
- Zhang L., Mao H., Zhuang Y., Wang L., Liu L., Dong Y., Du J., Xie W., Yuan Z. Odor prediction and aroma mixture design using machine learning model and molecular surface charge density profiles. Chemical Engineering Science. 2021. vol. 245. doi: 10.1016/j.ces.2021.116947.
- Nozaki Y., Nakamoto T. Predictive modeling for odor character of a chemical using machine learning combined with natural language processing. PloS one. 2018. vol. 13(12). doi: 10.1371/journal.pone.0208962.
- Lee D.-H., Woo S.-E., Jung M.-W., Heo T.-Y. Evaluation of odor prediction model performance and variable importance according to various missing imputation methods. Applied Sciences. 2022. vol. 12. no. 6. doi: 10.3390/app12062826.
- Rincon C.A., De Guardia A., Couvert A., Wolbert D., Le Roux S., Soutrel I., Nunes G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmospheric Environment. 2019. vol. 201. pp. 1–12. doi: 10.1016/j.atmosenv.2018.12.030.
- Hung N.V., Loi T.Q., Binh N.H., Nga N.T.T., Huong T.T., Luu D.L. Building an online learning model through a dance recognition video based on deep learning. Informatics and Automation. 2024. vol. 23(1). pp. 101–128. doi: 10.15622/ia.23.1.4.
- Ward R., Rahman S., Wuerger S., Marshall A. Predicting the colour associated with odours using an electronic nose. in Proceedings of the 1st Workshop on Multisensory Experiences-SensoryX’21. SBC, 2021. doi: 10.5753/sensoryx.2021.15683.
- Wu D., Luo D., Wong K.-Y., Hung K. POP-CNN: Predicting odor leasantness with convolutional neural network. IEEE Sensors Journal. 2019. vol. 19. no. 23. pp. 11337–11345. doi: 10.1109/JSEN.2019.2933692.
- Bilgera C., Yamamoto A., Sawano M., Matsukura H., Ishida H. Application of convolutional long short-term memory neural networks to signals collected from a sensor network for autonomous gas source localization in outdoor environments. Sensors. 2018. vol. 18. no. 12. doi: 10.3390/s18124484.
- Liu W., Zhong X., Liu G., Xie J. Emotion Recognition Based ECG in Olfactory-enhanced VR Scenes. 9th International Symposium on Computer and Information Processing Technology (ISCIPT). 2024. pp. 445–448. doi: 10.1109/ISCIPT61983.2024.10672829.
- Jing T., Meng Q.-H., Ishida H. Recent progress and trend of robot odor source localization. IEEJ Transactions on Electrical and Electronic Engineering. 2021. vol. 16. no. 7. pp. 938–953. doi: 10.1002/tee.23364.
- Grodniyomchai B., Satcharoen K., Tangtisanon P. Enhancing odor classification of essential oils with electronic nose data. 9th International Conference on Computer and Communication Systems (ICCCS). 2024. pp. 531–536. doi: 10.1109/ICCCS61882.2024.10603362.
- Saleme E.B., Santos C.A., Ghinea G. A mulsemedia framework for delivering sensory effects to heterogeneous systems. Multimedia Systems. 2019. vol. 25. pp. 421–447. doi: 10.1007/s00530-019-00618-8.
- Bhatia M., Kaur S., Sood S.K. Iot-inspired smart toilet system for home-based urine infection prediction. ACM Transactions on Computing for Healthcare. 2020. vol. 1. no. 3. pp. 1–25. doi: 10.1145/3379506.
Supplementary files
