Comparative Study of Person Re-Identification Techniques Based on Deep Learning Models

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Person re-identification (Re-ID) is crucial in intelligent surveillance, requiring precise identification of individuals across multiple camera viewpoints. Traditional distance-based methods, such as Euclidean and Cosine, struggle with challenges like posture variations and occlusions, limiting their effectiveness. This study explores deep metric learning models, specifically Siamese and Triplet networks, to improve Re-ID performance. We evaluate these methods on the Market-1501 dataset using Cumulative Matching Characteristic (CMC) and Cumulative Distribution Function (CDF) curves. Our findings reveal that the Triplet network outperforms traditional approaches at higher ranks, achieving Rank-5 accuracy of 78.6% and Rank-10 accuracy of 93%, while its Rank-1 accuracy remains low (0.06%). In contrast, Euclidean and Cosine distances show poor Rank-1 performance (2% and 0.30%, respectively), highlighting their limitations. Additionally, incorporating VGG16 enhances feature extraction, improving recognition by capturing fine-grained spatial details. This comparative study highlights the effectiveness of deep metric learning and underscores its potential for real-world surveillance applications. However, the computational demands of deep networks present challenges for real-time deployment. Future research should focus on optimizing model efficiency, reducing computational costs, and extending evaluations to real-time scenarios.

Авторлар туралы

M. Idrissi Alami

Mohammed V University in Rabat

Email: mossaab_idrissialami@um5.ac.ma
Av. des Nations Unies -

A. Ez-zahout

Mohammed V University in Rabat

Email: a.ezzahout@um5r.ac.ma
Av. des Nations Unies -

F. Omary

Mohammed V University in Rabat

Email: omary@fsr.ac.ma
Av. des Nations Unies -

Әдебиет тізімі

  1. Ezzahoutz A., Youssef H.M., Thami R.O.H. Detection evaluation and testing region incoming people’s in a simple camera view. Second International Conference on the Innovative Computing Technology (INTECH 2012). Casablanca: IEEE, 2012. pp. 179–183. doi: 10.1109/INTECH.2012.6457804.
  2. Ezzahout A., Hadi Y., Thami R.O.H. Performance Evaluation of Mobile Person Detection and Area Entry Tests through a One-View Camera. Journal of Information. 2012. vol. 2. no. 3.
  3. Sun Z., et al. A comprehensive review of pedestrian re-identification based on deep learning. Complex Intell. Syst. 2024. vol. 10. no. 2. pp. 1733–1768. doi: 10.1007/s40747-023-01229-7.
  4. Zahra A., Perwaiz N., Shahzad M., Fraz M.M. Person re-identification: A retrospective on domain specific open challenges and future trends. Pattern Recognition. 2023. vol. 142. p. 109669. doi: 10.1016/j.patcog.2023.109669.
  5. De Maesschalck R., Jouan-Rimbaud D., Massart D.L. The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems. 2000. vol. 50. no. 1. pp. 1–18. doi: 10.1016/S0169-7439(99)00047-7.
  6. Ghorbani H. Mahalanobis distance and its application for detecting multivariate outliers. Facta Universitatis, Series: Mathematics and Informatics. 2019. pp. 583–595. doi: 10.22190/FUMI1903583G.
  7. Mclachlan G. Mahalanobis Distance. Resonance. 1999. vol. 4. pp. 20–26. doi: 10.1007/BF02834632.
  8. Tena S., Hartanto R., Ardiyanto I. Content-based image retrieval for fabric images: A survey. Indones. J. Electr. Eng. Comput. Sci. 2021. vol. 23. no. 3. doi: 10.11591/ijeecs.v23.i3.pp1861-1872.
  9. Samit Hatem A., Altememe M.S., Fadhel M.A. Identifying corn leaves diseases by extensive use of transfer learning: a comparative study. Indones. J. Electr. Eng. Comput. Sci. 2023. vol. 29. no. 2. doi: 10.11591/ijeecs.v29.i2.pp1030-1038.
  10. Gottipati S.B., Thumbur G. Multi-modal fusion deep transfer learning for accurate brain tumor classification using magnetic resonance imaging images. Indones. J. Electr. Eng. Comput. Sci. 2024. vol. 34. no. 2. doi: 10.11591/ijeecs.v34.i2.pp825-834.
  11. Sehree N.A., Khidhir A.M. Olive trees cases classification based on deep convolutional neural network from unmanned aerial vehicle imagery. Indones. J. Electr. Eng. Comput. Sci. 2022. vol. 27. no. 1. pp. 92–101. doi: 10.11591/ijeecs.v27.i1.pp92-101.
  12. Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556. 2015. doi: 10.48550/arXiv.1409.1556.
  13. Aufar Y., Sitanggang I.S. Face recognition based on Siamese convolutional neural network using Kivy framework. IJEECS. 2022. vol. 26. no. 2. pp. 764–772. doi: 10.11591/ijeecs.v26.i2.
  14. Xu J. A deep learning approach to building an intelligent video surveillance system. Multimedia Tools and Applications. 2021. vol. 80(4). pp. 5495–5515. doi: 10.1007/s11042-020-09964-6.
  15. Alami M.I., Ez-Zahout A., Omary F. Enhanced people re-identification in cctv surveillance using deep learning: a framework for real-world applications. Informatics and Automation. 2025. vol. 24. no. 2. pp. 583–603. doi: 10.15622/ia.24.2.8.
  16. Moghaddam A.S., Anvari F., Haghighi M.M., Fakhari M., Mohammadi M.R. IUST_PersonReId: A New Domain in Person Re-Identification Datasets. arXiv preprint arXiv:2412.18874. 2024. doi: 10.48550/arXiv.2412.18874.
  17. Wang G.A, Gong S., Cheng J., Hou Z. Faster Person Re-identification. European conference on computer vision (ECCV 2020). Cham: Springer International Publishing, 2020. vol. 12353. pp. 275–292. doi: 10.1007/978-3-030-58598-3_17.
  18. Rami H., Ospici M., Lathuilière S. Online Unsupervised Domain Adaptation for Person Re-identification. arXiv preprint arXiv:2205.04383. 2022. doi: 10.48550/arXiv.2205.04383.
  19. Khan S.U., Khan N., Hussain T., Baik S.W. An intelligent correlation learning system for person Re-identification. Engineering Applications of Artificial Intelligence. 2024. vol. 128. doi: 10.1016/j.engappai.2023.107213.
  20. Khan S.U., Hussain T., Ullah A., Baik S.W. Deep-ReID: deep features and autoencoder assisted image patching strategy for person re-identification in smart cities surveillance. Multimed Tools Appl. 2024. vol. 83. no. 5. pp. 15079–15100. doi: 10.1007/s11042-020-10145-8.
  21. He S., Luo H., Wang P., Wang F., Li H., Jiang W. TransReID: Transformer-Based Object Re-Identification (CVPR). Proceedings of the IEEE/CVF international conference on computer vision. 2023. pp. 15013–15022.
  22. Ye M., Chen S., Li C., Zheng W.-S., Crandall D., Du B. Transformer for Object Re-Identification: A Survey. arXiv preprint arXiv:2401.06960. 2024. doi: 10.48550/arXiv.2401.06960.
  23. Choudhary A., Mishra D., Karmakar A. Domain Adaptive Egocentric Person Re-identification. Computer Vision and Image Processing: 5th International Conference (CVIP 2020). 2021. vol. 1378. pp. 81–92. doi: 10.1007/978-981-16-1103-2_8.
  24. Taye M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers. 2023. vol. 12. no. 5. doi: 10.3390/computers12050091.
  25. Chopra S., Hadsell R., LeCun Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego, CA, USA: IEEE, 2005. vol. 1. pp. 539–546. doi: 10.1109/CVPR.2005.202.
  26. Schroff F., Kalenichenko D., Philbin J. FaceNet: A unified embedding for face recognition and clustering. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. pp. 815–823. doi: 10.1109/CVPR.2015.7298682.
  27. Karanam S., Gou M., Wu Z., Rates-Borras A., Camps O., Radke R.J. A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets. arXiv preprint arXiv:1605.09653. 2018.
  28. Xu P., Zhu X. DeepChange: A Long-Term Person Re-Identification Benchmark with Clothes Change. IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE, 2023. pp. 11162–11171. doi: 10.1109/ICCV51070.2023.01028.
  29. Ye M., Shen J., Lin G., Xiang T., Shao L., Hoi S.C. Deep Learning for Person Re-identification: A Survey and Outlook. arXiv preprint arXiv:2001.04193. 2021. doi: 10.48550/arXiv.2001.04193.
  30. Ning E., Wang C., Zhang H., Ning X., Tiwari P. Occluded person re-identification with deep learning: A survey and perspectives. Expert Systems with Applications. 2024. vol. 239. doi: 10.1016/j.eswa.2023.122419.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).