Chitin/chitosan: bioresources, applications field, production technologies

Cover Page

Cite item

Full Text

Abstract

The present review is devoted to such biotechnologically interesting polymers as chitin and chitosan, which form the cuticle of arthropods and the core of fungal cell wall. Chitosan is a linear polysaccharide containing D-glucosamine and N-acetyl-D-glucosamine residues, which has valuable biological properties. It is a product of deacetylation of chitin. Possessing pronounced muco-adhesive properties and controlled release ability, the chitosan is widely used in delivery of various therapeutic agents, such as anticancer drugs, antibiotics, proteins, nucleic acids, etc. Chitosan nanoparticles, micro- and nanocapsules, as well as hydrogels, can be developed for targeted delivery of drugs to specific organs and tissues. Initially, the attention of biotechnologists was focused on animal chitin, and basic methods for extracting and purifying this biopolymer took shape at this stage. Despite the complexity of the organization of the arthropod cuticle, the chitin in it is not covalently bound to other linear biopolymers and is organized into nanofibrils that form a fairly homogeneous matrix, therefore it is easier to extract than from the mycelium mass of fungi, where this biopolymer is tightly packed into microfibrils bound to the glucan matrix. The main stages of chitin extraction and its further modification into chitosan are deproteinization, demineralization, deacetylation, and the main methods of chitosan purification are filtration, dialysis and reprecipitation. After isolation, chitosan should be dried. To extract chitin from the fungi, the above classical chemical methods are often combined with the methods of “green chemistry” and industrial microbiology. The profitability of the production of chitin/chitosan from crustaceans and edible mushrooms is approximately at the same level. The cost of mushroom products can be reduced by using agricultural or forestry waste as nutrient substrates. This makes the use of fungi as sources of chitin/chitosan in forest regions rather promising.

About the authors

Vladimir V. Perelygin

Saint Petersburg State Chemical and Pharmaceutical University

Email: vladimir.pereligin@pharminnotech.com

Dr. Med. Sci., Professor, Head of the Industrial Ecology Department

Russian Federation, Saint Petersburg

Tatyana A. Nekrasova

MEDPROF Limited Liability Company

Email: Nekrasova555@mail.ru

PhD in Pharmacy

Russian Federation, Saint Petersburg

Mikhail V. Zharikov

Saint Petersburg State Chemical and Pharmaceutical University

Author for correspondence.
Email: zharikov.mihail@pharminnotech.com

Senior laboratory assistant at the Department of Industrial Ecology

Russian Federation, Saint Petersburg

Anna O. Werner

Saint Petersburg State Chemical and Pharmaceutical University

Email: verner.anna@spcpu.ru

Undergraduate Student, the Industrial Ecology Department

Russian Federation, Saint Petersburg

Ivan V. Zmitrovich

Komarov Botanical Institute of the Russian Academy of Sciences

Email: iv_zmitrovich@mail.ru

D.Sc. in Biology, Leading Researcher, Laboratory of Systematics and Geography of the Fungi

Russian Federation, Saint Petersburg

References

  1. Jang M. K., Kong B. G., Jeong Y. I., Lee C. H., Nah J. W. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry. 2004. V. 42(14). P. 3423–3432.
  2. Gleba D., Borisjuk N. V., Borisjuk L. G., Kneer R., Poulev A., Skarzhinskay, M., Raskin I. Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Sciences. 1999. V. 96(11). P. 5973–5977.
  3. Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review of Microbiology. 1968. V. 22(1). P. 87–108.
  4. Merzendorfer H. The cellular basis of chitin synthesis in fungi and insects: common principles and differences. European Journal of Cell Biology. 2011. V. 90(9). P. 759–769.
  5. Rojas-Graü M. A., Avena-Bustillos R. J., Olsen C., Friedman M., Henika P. R., Martín-Belloso O., McHugh T. H. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. Journal of Food Engineering. 2007. V. 81(3). P. 634–641.
  6. Prashanth K. V., Tharanathan R. N. Chitin/chitosan: modifications and their unlimited application potential – an overview. Trends in food science and technology. 2007. V. 18(3). P. 117–131.
  7. Ravi Kumar M. N. V. A review of chitin and chitosan applications. Reactive and Functional Polymers. 2000. V. 46(1). P. 1–27.
  8. Jayakumar R., Prabaharan M., Nair S. V. Tamura H. Novel chitin and chitosan materials in wound dressing. Biomedical engineering, biotechnology, and health sciences, 2010. V. 2. P. 29–51.
  9. Qi L. F., Xu Z. R., Li Y., Jiang X., Han X. Y. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World Journal of Gastroenterology. 2005. V. 11(33). P. 5136.
  10. Muzzarelli R. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers. 2009. V. 76(2). P. 167–182.
  11. Muzzarelli R. A., Boudrant J., Meyer D., Manno N., DeMarchis M., Paoletti M. G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers. 2012. V. 87(2). P. 995–1012.
  12. Fang Z. H., Zhao C. Q., Shi Z. L., Tang Z. R., Chen H. L., Yao K. D. Antibacterial and physical properties of chitosan-reinforced sodium alginate transparent film. Journal of applied polymer science. 2001. V. 82(2). P. 398–402.
  13. Xia W., Liu P., Zhang J., Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids. 2011. V. 25(2). P. 170–179.
  14. Dutta P. K., Dutta J., Tripathi V. S. Chitin and chitosan: Chemistry, properties and applications. Journal of scientific and industrial research. 2004. V. 63(1). P. 20–31.
  15. Pillai C. K.S. et al. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 2009. V. 34(7). P. 641–678.
  16. Rinaudo M. Chitin and chitosan: Properties and applications. Progress in Polymer Science. 2006. V. 31(7). P. 603–632.
  17. Muzzarelli R. A.A. Chitin and its derivatives: New trends of applied research. Carbohydrate Polymers. 1983. V. 3(1). P. 53–75.
  18. Dutta P. K., Dutta J., Tripathi V. Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research. 2004. P. 63(1). P. 20–31.
  19. Tharanathan R. N., Kittur F. S. Chitin-the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition. 2003. V. 43(1). P. 61–87.
  20. Domard A. pH and c. d. measurements on a fully deacetylated chitosan: application to Cu II-polymer interactions. International Journal of Biological Macromolecules. 1987. V. 9(2). P. 98–104.
  21. Ravi Kumar M. N.V. A review of chitin and chitosan applications. Reactive and Functional Polymers. 2000. V. 46(1). P. 1–27.
  22. Xia W. et al. Medical application of chitosan. Carbohydrate Polymers. 2011. V. 84(1). P. 22–34.
  23. Cheung R. C., Ng T. B., Wong J. H., Chan W. I. Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs. 2015. V. 13(8). P. 5156–5186. doi: 10.3390/md13085156
  24. Jayakumar R., Prabaharan M., Kumar S. P. T., Nair S. V., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances. 2011. V. 29(3). P. 322–337. doi: 10.1016/j.biotechadv.2011.01.005
  25. Okamoto Y. et al. Biomedical applications of chitin and chitosan. Progress in Polymer Science. 2003. V. 28(2). P. 187–226.
  26. Katas H., Alpar H. O. Development and characterisation of chitosan nanoparticles for siRNA delivery. Journal of Controlled Release. 2006. V. 115(2). P. 216–225.
  27. Di Martino A. et al. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Carbohydrate Polymers. 2005. V. 59(2). P. 185–199.
  28. Sinha V. R., Singla A. K., Wadhawan S., Kaushik R., Kumria R., Bansal K., Dhawan S. Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceutics. 2004. V. 274(1–2). P. 1–33. doi: 10.1016/j.ijpharm.2003.12.026
  29. Hejazi R., Amiji M. Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release. 2003. V. 89(2). P. 151–165.
  30. Madihally S. V., Matthew H. W.T. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999. V. 20(12). P. 1133–1142.
  31. Seol Y. J., Lee J. Y., Park Y. J. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology Letters. 2004. V. 26(13). P. 1037–1041. doi: 10.1023/B: BILE.0000032962.79531.fd
  32. Rabea E. I. et al. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003. V. 4(6). P. 1457–1465.
  33. Goy R. C., De Britto D., Assis O. B.G. A review of the antimicrobial activity of chitosan. Polímeros. 2009. V. 19(3). P. 241–247. doi: 10.1590/S0104-14282009000300013
  34. Rowe R. C., Sheskey P. G., Quinn M. E. Handbook of pharmaceutical excipients. Pharmaceutical press, London, Chicago, 2009. 917 p.
  35. Mitra S., Gaur U. Chitosan-based systems for deoxyribonucleic acid delivery. Expert Opinion in Drug Delivery. 2012. V. 9(7). P. 663–665.
  36. Amidi M., Mastrobattista E., Jiskoot W., Hennink W. E. Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Review. 2010. V. 62(1). P. 59–82. doi: 10.1016/j.addr.2009.11.009
  37. Upadhyaya L., Singh J., Agarwal V., Tewari R. P. Biomedical applications of carboxymethyl chitosans. Carbohydrate Polymers. 2013. V. 91(1). P. 452–466. doi: 10.1016/j.carbpol.2012.07.076
  38. Huang R. et al. Chitosan derived oligosaccharides: Advancement and perspectives. Marine Drugs. 2020. V. 18(4). P. 225.
  39. Shahidi F., Kamil J., Arachchi V., Jeon Y. J. Food applications of chitin and chitosans. Trends in Food Science and Technology. 1999. V. 10(2). P. 37–51. doi: 10.1016/S0924-2244(99)00017-5
  40. Choi B. K. et al. In vitro and in vivo studies of chitosan-based oral delivery systems for ovalbumin. Internatonal Journal of Pharmaceutics. 1998. V. 157(1). P. 95–101.
  41. Elsabee M. Z., Abdou E. S. Chitosan based edible films and coatings: A review. Materials Science and Engineering. C. 2013. V. 33(4). P. 1819–1841.
  42. Aider M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT – Food Science and Technology. 2010. V. 43(6). P. 837–842.
  43. Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology. 2004. V. 38(1). P. 43–74.
  44. Jothi D. et al. Adsorption of mycotoxins by chitosan and chitosan oligosaccharides. Food Hydrocolloids. 2017. V. 67. P. 173–182.
  45. Zou P. et al. Chitosan-based delivery systems for proteins and peptides. Acta Pharm. Sin. B. 2016. V. 6(4). P. 322–330.
  46. Xia W., Liu P., Zhang J., Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids. 2011. V. 25(2). P. 170–179.
  47. Friedman M., Juneja V. K. Review of antimicrobial and antioxidative activities of chitosans in food. Journal of Food Protection. 2010. V. 73(9). P. 1737–1761.
  48. Leceta I. et al. Environmental assessment of chitosan-based films. Journal of Cleaner Production. 2013. V. 41. P. 312–318.
  49. Salaberria A. M., Diaz R. H., Labidi J., Fernandes S. C. M. Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Food Hydrocolloids. 2015. V. 46. P. 42–52. doi: 10.1016/j.foodhyd.2014.12.016
  50. Divya K., Vijayan S., George T. K. Antimicrobial properties of chitosan nanoparticles: Effect of preparation conditions on their antibacterial activity. Carbohydrate Polymers. 2017. V. 164. P. 119–125. doi: 10.1007/s12221-017-6690-1
  51. Dutta P. K., Tripathi S., Mehrotra G. K., Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry. 2009. V. 114(4). P. 1173–1182. doi: 10.1016/j.foodchem.2008.11.047
  52. Feng T. et al. Adsorption and desorption characteristics of aflatoxin B1 on acid-and alkali-treated chitosan. Carbohydrate Polymers. 2016. V. 153. P. 246–253.
  53. Kumar M. N., Muzzarelli R. A., Muzzarelli C., Sashiwa H., Domb A. J. Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews. 2004. V. 104(12). P. 6017–1684. doi: 10.1021/cr030441b
  54. Devlieghere F. et al. Antimicrobial activity of chitosan food coatings. In: Chitin handbook. 1997. P. 385–395.
  55. Papineau A. M. et al. Antimicrobial effect of water-soluble chitosans on the growth of various microorganisms. Applied and Environmental Microbiology. 1991. V. 57(5). P. 1434–1439.
  56. Hatchett C. Experiments and observations on shell and bone. Philosophical Transactions of the Royal Society of London. 1799. V. 89(18). P. 315–334.
  57. Braconnot H. Analytical research on the nature of mushrooms. In: Klostermann J (ed.). Collection of memoirs concerning chemistry and the arts which depend on it and especially pharmacy, volume seventy-nine. Annals of Chemistry. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées. Paris, 1811. P. 272–292.
  58. Braconnot H. On the nature of mushrooms. In: Klostermann J (ed.). Collection of memoirs concerning chemistry and the arts which depend on it and especially pharmacy, volume seventy-nine. Annals of Chemistry. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées. Paris, 1811. P. 265–304.
  59. Odier A. Mémoire sur la composition chimique des parties cornées des insects. Mémoires de la Société d’Histoire Naturelle de Paris. 1823. V. 1. P. 29–42.
  60. Crini G. Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters. 2019. V. 17. P. 1623–1643. doi: 10.1007/s10311-019-00901-0
  61. Hoffer A. Über die Konstitution des Chitins und Chitosans. Monatshefte fur Chemie. 1906. V. 27. P. 85–106.
  62. Malcżewski A. B. Process for the preparation of crystalline chitin derivatives. Polish Patent. 1934. No. 21. P. 859.
  63. Nomura H., Yoshida H. Chitin derivatives. I. Production of chitin derivatives from crab shells. Sen’i Gakkaishi. 1962. V. 18. P. 210–217.
  64. Perrin A. C. Sur une nouvelle substance formée analogue à la chitine. Comptes rendus de l’Académie des Sciences. 1904. V. 139. P. 529–531.
  65. Carnoy F. Recherches sur la composition chimique de la membrane cellulaire chez les champignons. La Cellule. 1926. V. 37. P. 88–90.
  66. Perrin A. C. Über das Chitin und seine Spaltungsprodukte. Berichte der deutschen chemischen Gesellschaft. 1904. V. 37(2). P. 1430–1440.
  67. Schmuk A. Über die Zellwände der Basidiomyceten und ihre Chemie. Zeitschrift für physiologische. Chemie. 1931. V. 199(1–2). P. 94–106.
  68. Araki Y., Ito E. A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. European Journal of Biochemistry. 1975. V. 55(1). P. 71–78.
  69. History of research in the field of chitin and chitosan / [Electronic resource] // Russian Chitin Society: [website]. – URL: http://www.chitin.ru/history.htm. (In Russ).
  70. Fabritius H., Sachs C., Raabe D., Nikolov S., Friák M., Neugebauer J. Chitin in the exoskeletons of Arthropoda: from ancient design to novel materials science. In: N. Gupta (ed.) Chitin. Topics in Geobiology. V. 34. Springer, Dordrecht, 2011. https://doi.org/10.1007/978-90-481-9684-5_2
  71. Rinaudo M. Chitin and chitosan: Properties and applications. Progress in Polymer Science. 2006. V. 31(7). P. 603–632.
  72. Pillai C. K.S., Paul W., Sharma C. P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 2009. V. 34(7). P. 641–678.
  73. Younes I., Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 2015. V. 13(3). P. 1133–1174.
  74. Kaya M., Baran T., Asan-Ozusaglam M., Cakmak Y. S., Tozak K. O., Mol A., Sezen, G. Extraction and characterization of chitin and chitosan from six different freshwater crustaceans. Food Bioscience. 2015. V. 12. P. 108–114.
  75. Aranaz I., Mengíbar M., Harris R., Paños I., Miralles B., Acosta N., Heras Á. Functional characterization of chitin and chitosan. Current Chemical Biology. 2009. V. 3(2). P. 203–230.
  76. Synowiecki J., Al-Khateeb N. A. Production, properties, and some new applications of chitin and its derivatives. Critical reviews in food science and nutrition. 2003. V. 43(2). P. 145–171.
  77. Younes I., Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 2015. V. 13(3). P. 1133–1174.
  78. Kumirska J., Czerwicka M., Kaczyński Z., Bychowska A., Brzozowski K., Thöming J., Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs. 2010. V. 8(5). P. 1567–1636.
  79. Liao W., Tian M., Qian C., Yu Y., Zhao J., Li X., Chen L. Optimization of the demineralization process for chitin extraction from cicada slough. International Journal of Biological Macromolecules. 2020. V. 146. P. 390–397.
  80. Zargar V., Asghari M., Dashti, A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews. 2015. V. 2(3). P. 204–226.
  81. Kaya M., Baran T., Asan-Ozusaglam M., Cakmak Y. S., Tozak K.Ö., Mol A., Şatıroğlu N. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnology and Bioprocess Engineering. 2015. V. 20(1). P. 168–179.
  82. Zhou Y., Liang T., Wu C., Wu D., Li X., Chen L. Efficient demineralization of chitin via a modified electrochemical process and its characterization. International Journal of Biological Macromolecules. 2021. V. 172. P. 506–513.
  83. No H. K., Meyers S. P. Preparation and characterization of chitin and chitosan – a review. Journal of Aquatic Food Product Technology. 1995. V. 4(2). P. 27–52.
  84. Synowiecki J., Al-Khateeb N. A. Production, properties, and some new applications of chitin and its derivatives. Critical reviews in food science and nutrition. 2003. V. 43(2). P. 145–171.
  85. Rinaudo M. Chitin and chitosan: properties and applications. Progress in Polymer Science. 2006. V. 31(7). P. 603–632.
  86. Younes I., Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 2015. V. 13(3). P. 1133–1174.
  87. Abdou E. S. Nagy K. S., Elsabee M. Z. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology. 2008. V. 99(5). P. 1359–1367.
  88. Kumirska J., Czerwicka M., Kaczyński Z., Bychowska A., Brzozowski K., Thöming J., Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs. 2010. V. 8(5). P. 1567–1636.
  89. Younes I., Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 2015. V. 13(3). P. 1133–1174.
  90. Brugnerotto J., Lizardi J., Goycoolea F. M., Argüelles-Monal W., Desbrieres J., Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001. V. 42(8). P. 3569–3580.
  91. Lertsutthiwong P. N., How C., Chandrkrachang S., Stevens W. F. Effect of chemical treatment on the characteristics of shrimp chitosan. Journal of Metals, Materials and Minerals. 2002. V. 12(2). P. 11–18.
  92. Jiang J., Habib A., Liu Y., Li Y., Jin L., Li B., Li L. Preparation and characterization of chitosan from squid pens and its antioxidant and antibacterial activities. International Journal of Biological Macromolecules. 2020. V. 163. P. 1581–1590.
  93. Huang W., Geng M., Guan Y., Dou H., Liu Z. Preparation, characterization, and biological applications of water-soluble chitosan derivatives. International Journal of Molecular Sciences. 2021. V. 22(6). P. 3173.
  94. Shimojoh M., Akiyoshi A., Chiba Y., Yamamoto N., Kajiyama S. Enzymatic deacetylation of chitin using chitinase from Bacillus cereus. Bioscience, Biotechnology, and Biochemistry. 2021. V. 85(2). P. 551–556.
  95. Dash M., Mohan T., Heinze T., Chiellini F. Novel methodologies for the deacetylation of chitin using ionic liquids. Carbohydrate Polymers. 2021. V. 251. P. 117100.
  96. Abdou E. S., Nagy K. S., Elsabee M. Z. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology. 2008. V. 99(5). P. 1359–1367.
  97. Jiang J., Habib A., Liu Y., Li Y., Jin L., Li B., Li L. Preparation and characterization of chitosan from squid pens and its antioxidant and antibacterial activities. International Journal of Biological Macromolecules. 2020. V. 163. 1581–1590.
  98. Huang W., Geng M., Guan Y., Dou H., Liu Z. Preparation, characterization, and biological applications of water-soluble chitosan derivatives. International Journal of Molecular Sciences. 2021. V. 22(6). P. 3173.
  99. Abdou E. S., Nagy K. S., Elsabee M. Z. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 2008. V. 99(5). P. 1359–1367.
  100. Dash M., Mohan T., Heinze T., Chiellini F. Novel methodologies for the deacetylation of chitin using ionic liquids. Carbohydrate Polymers. 2021. V. 251. P. 117100.
  101. Brugnerotto J., Lizardi J., Goycoolea F. M., Argüelles-Monal W., Desbrieres J., Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001. V. 42(8). P. 3569–3580.
  102. Huang W., Geng M., Guan Y., Dou H., Liu Z. Pre paration, characterization, and biological applications of water-soluble chitosan derivatives. International Journal of Molecular Sciences. 2021. V. 22(6). P. 3173.
  103. Joshi R., Kumar P., Devkhile K., Srivastava R. B., Gupta R. B. Fungal biodiversity of the Indian Himalayan region. Renewable and Sustainable Energy Reviews. 2018. V. 82. 3146–3157.
  104. Abo Elsoud M. M., El Kady E. M. Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre. 2019. V. 43. Art. 59. doi: 10.1186/s42269-019-0105-y
  105. Fraga S. M., Nunes F. M. Agaricus bisporus by-products as a source of chitin-glucan complex enriched dietary fibre with potential bioactivity. Applied Sciences. 2020. V. 10. Art. 2232. doi: 10.3390/app10072232
  106. Huq T., Khan A., Brown D., Dhayagude N., He Z., Ni Y. Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts. 2022. V. 7. Issue 2. P. 85–98. doi: 10.1016/j.jobab.2022.01.002
  107. Minakov D. V., Egorova E.Yu., Markin V. I., Bazarnova N. G. Modern approaches to the isolation and modification of macromolecules of chitin and chitosan of higher fungi for their applied use. Khimiya rastitelnogo syryya. 2023 (4). P. 29–52. doi: 10.14258/jcprm.2023041338. (In Russ).
  108. Jiang X., Chen L. Process optimization for the extraction of chitin from Pleurotus ostreatus. Carbohydrate Polymers. 2019. V. 207. P. 552–560.
  109. Balan V., A review on the applications of chitin-and chitosan-based materials for solid-liquid separation processes. Environmental Technology Reviews. 2018. V. 7(1). P. 91–103.
  110. Kurakake M., Komaki T., Matsumoto N., Kirihara K., Hazuka I., Yamamoto T. Production of chitosan by Gongronella butleri. Bioscience, Biotechnology, and Biochemistry. 1994. V. 58(12). P. 2261–2262.
  111. Rahman M., Halfar J. First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Scientific Reports. 2014. V. 4. P. 6162. doi: 10.1038/srep06162
  112. Gonçalves I. R., Brouillet S., Soulié M. C. Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evolutionary Biology. 2016. V. 16. P. 252. doi: 10.1186/s12862-016-0815-9
  113. Klinter S., Bulone V., Arvestad L., Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota). Molecular Phylogenetics and Evolution. 2019. V. 139. P. 106558. doi: 10.1016/j.ympev.2019.106558
  114. Bajaj M., Freiberg A., Winter J., Gallert C. Isolation of chitin from the cell wall of fungus Cunninghamella japonica. AMB Express. 2011. V. 1(1). P. 1–8.
  115. Wu T., Zivanovic S., Draughon A. et al. Chitin and chitosans: value-added products from mushroom waste. Journal of Agricultural and Food Chemistry. 2004. V. 52. P. 7905–7910.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chemical structure of the chitin monomer (top) and the chitosan monomer (bottom)

Download (47KB)
3. Fig. 2. Generalized diagram of the organization of the arthropode cuticle. Chitin nanofibrils are immersed in an amorphous matrix formed by cuticular proteins and sometimes the lime granules (according to: [70])

Download (164KB)
4. Fig. 3. Primary – quaternary structure of chitin in fungal cell wall (according to: [106])

Download (128KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».