Том 215, № 9 (2024)
О 3-диффеоморфизмах с обобщенным аттрактором Плыкина
Аннотация
Известно, что нетривиальный аттрактор в неблуждающем множестве $\Omega$-устойчивого 3-диффеоморфизма сосуществует с тривиальными базисными множествами тогда и только тогда, когда он либо одномерный неориентируемый, либо двумерный растягивающийся (ориентируемый или неориентируемый). Ранее были построены примеры соответствующих диффеоморфизмов, за исключением случая двумерного неориентируемого аттрактора. Настоящая работа восполняет этот пробел. Кроме того, здесь конструктивно доказывается существование энергетической функции у построенного диффеоморфизма, тем самым расширяется класс каскадов, обладающих глобальной функцией Ляпунова, множество критических точек которой совпадает с неблуждающим множеством динамической системы.Библиография: 20 названий.
Математический сборник. 2024;215(9):3-29
3-29
Обобщенная теорема Якоби–Шаля в неевклидовых пространствах
Аннотация
Классическая теорема Якоби–Шаля утверждает, что касательные линии, проведенные к каждой точке геодезической на $n$-осном эллипсоиде в евклидовом $n$-мерном пространстве, касаются помимо этого эллипсоида еще $n-2$ софокусных с ним квадрик, общих для всех точек этой геодезической. Эта теорема обеспечивает интегрируемость геодезического потока на эллипсоиде. Недавние результаты Г. В. Белозерова и В. А. Кибкало показывают, что аналогичная теорема справедлива для произвольного пересечения софокусных квадрик в евклидовом пространстве. В настоящей работе показано, что геодезический поток на пересечении нескольких софокусных квадрик в псевдоевклидовых пространствах $\mathbb R^{p,q}$, а также в пространствах постоянной кривизны является интегрируемым. В качестве следствия доказан аналогичный результат для софокусных биллиардов на таких пересечениях. При этом показано, что в случае размерности 2 последний результат нельзя распространить на поверхности, локально неизометричные пространствам постоянной кривизны.Библиография: 15 названий.
Математический сборник. 2024;215(9):30-55
30-55
Любая группа есть группа гомотопических эквивалентностей конечномерного $\mathrm{CW}$-комплекса
Аннотация
Доказано, что любая группа $G$ является группой $\mathcal E(X)$ гомотопических эквивалентностей $\mathrm{CW}$-комплекса $X$ конечной размерности. Таким образом, получено обобщение известной теоремы К. Костои и А. Вируэля [9], согласно которой любая конечная группа является группой $\mathcal E(X)$ гомотопических эквивалентностей рационального эллиптического пространства $X$.Библиография: 12 названий.
Математический сборник. 2024;215(9):56-76
56-76
Аппроксимативные свойства средних Валле Пуссена частичных сумм ряда Фурье по полиномам Мейкснера–Соболева
Аннотация
Исследована задача об отклонении от функции $f\in W^r_{l^2_{\omega}(\Omega_\delta)}$, $\omega(x)=e^{-x}(1-e^{-\delta})$ средних Валле Пуссена частичных сумм ряда Фурье по системе полиномов $\{m_{n,N}^{0,r}(x)\}$, ортонормированной по Соболеву и порожденной системой полиномов Мейкснера.Библиография: 32 названия.
Математический сборник. 2024;215(9):77-98
77-98
Численно-аналитическое построение обобщенного решения уравнения эйконала в плоском случае
Аннотация
В 1970-х годах С. Н. Кружков ввел понятие обобщенного решения уравнения эйконала и для среды с постоянным коэффициентом преломления указал класс функций, которому принадлежит обобщенное решение краевой задачи Дирихле. В работе изложены конструктивные методы его построения для плоского случая. Зарождение негладких (сингулярных) особенностей обобщенного решения обусловлено псевдовершинами – особыми точками границы краевого множества, выявление которых связано с проблемой нахождения неподвижных точек отображений, формируемых при ее локальной перепараметризации. Получены необходимые условия существования псевдовершин при разрыве гладкости кривизны параметрически заданной границы краевого множества. Условия имеют вид уравнения относительно маркера псевдовершины – числовой характеристики локальной невыпуклости краевого множества. Уравнение, обладая характерной структурой, свойственной конструкциям с неподвижной точкой, сводится к алгебраическому уравнению. Решение этого уравнения, маркер, найдено в аналитическом виде для случая, когда в псевдовершине достигается негладкий экстремум кривизны границы краевого множества. Приведен пример численно-аналитического построения обобщенного решения краевой задачи, сингулярного множества и эволюции волновых фронтов.Библиография: 29 названий.
Математический сборник. 2024;215(9):99-124
99-124
О критерии Молчанова компактности резольвенты для несамосопряженного оператора Штурма–Лиувилля
Аннотация
Рассматривается условие типа Молчанова в применении к обыкновенным дифференциальным операторам произвольного порядка с комплекснозначными коэффициентами. Доказывается, что оно является необходимым условием компактности резольвенты для широкого класса таких операторов. Приводится контрпример, показывающий, что это условие не является достаточным для компактности резольвенты оператора Штурма–Лиувилля с потенциалом, имеющим неотрицательную вещественную часть. Критерий Молчанова обобщается на случай потенциалов, принимающих значения в более узком секторе, чем полуплоскость, отделенном от отрицательной полуоси.Библиография: 18 названий.
Математический сборник. 2024;215(9):125-146
125-146

