Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 215, № 10 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Модули полустабильных пучков ранга $2$ на рациональных трехмерных многообразиях Фано основной серии

Васильев Д.А., Тихомиров А.С.

Аннотация

В статье исследуются пространства модулей полустабильных когерентных пучков ранга $2$ на проективном пространстве $\mathbb{P}^3$ и следующих за ним рациональных многообразиях Фано основной серии – трехмерной квадрике $X_2$, пересечении двух четырехмерных квадрик $X_4$ и многообразии Фано $X_5$ степени $5$. Для квадрики $X_2$ доказана ограниченность третьего класса Черна $c_3$ полустабильных объектов ранга $2$, в том числе пучков, из $\mathrm{D}^b(X_2)$. Дано явное описание всех пространств модулей полустабильных пучков ранга $2$ на $X_2$, в том числе рефлексивных, с максимальным третьим классом Черна $c_3\ge0$. Эти пространства оказываются неприводимыми гладкими рациональными многообразиями во всех случаях, за исключением следующих двух: $(c_1,c_2,c_3)=(0,2,2)$ либо $(0,4,8)$. Найден первый пример несвязного пространства модулей полустабильных пучков ранга $2$ с фиксированными классами Черна на гладком проективном многообразии – это второй из указанных исключительных случаев $(c_1,c_2,c_3)= (0,4,8)$ на квадрике $X_2$. Построен ряд новых бесконечных серий рациональных компонент пространств модулей полустабильных пучков ранга $2$ на $\mathbb{P}^3$, $X_2$, $X_4$ и $X_5$, а также новая бесконечная серия нерациональных компонент на $X_4$. Доказана ограниченность класса $c_3$ при $c_1=0$ и любом $c_2>0$ для стабильных рефлексивных пучков основного типа на многообразиях $X_4$ и $X_5$.Библиография: 30 названий.
Математический сборник. 2024;215(10):3-57
pages 3-57 views

Некоторые функционалы для случайных блужданий и критические ветвящиеся процессы в экстремально неблагоприятной среде

Ватутин В.А., Донг К., Дьяконова Е.Е.

Аннотация

Пусть $\{S_{n}, n\geqslant 0\}$ – случайное блуждание, распределение шага которого принадлежит без центрировки области притяжения устойчивого распределения индекса $\alpha $, т.е. существует такая нормирующая последовательность констант $a_{n}$, что последовательность $S_{n}/a_{n}$, $n=1,2,…$, слабо сходится при $n\to \infty $ к случайной величине, имеющей устойчивое распределение индекса $\alpha $. Пусть $S_{0}=0$,$$L_{n}:=\min (S_{1},…,S_{n}),\qquad\tau _{n}:=\min \{ 0\leqslant k\leqslant n\colon S_{k}=\min (0,L_{n})\} .$$В предположении, что $S_{n}\leqslant h(n)$, где функция $h(n)$ имеет порядок $o(a_{n})$ при $n\to\infty$ и $\lim_{n\to \infty }h(n)\in [ -\infty,+\infty ]$ существует, доказан ряд предельных теорем, описывающих асимптотическое поведение функционалов вида$$\mathbf{E}[ e^{\lambda S_{\tau _{n}}};  S_{n}\leqslant h(n)], \qquad \lambda>0,$$при $n\to \infty $. Полученные результаты используются при исследовании вероятности невырождения критического ветвящегося процесса, эволюционирующего в экстремально неблагоприятной среде.Библиография: 15 названий.
Математический сборник. 2024;215(10):58-88
pages 58-88 views

О связности группы автоморфизмов аффинного торического многообразия

Киктева В.В.

Аннотация

Найден критерий связности группы автоморфизмов аффинного торического многообразия в комбинаторных терминах и в терминах группы классов дивизоров многообразия. Описана группа компонент группы автоморфизмов невырожденного аффинного торического многообразия. В частности, доказано, что для таких многообразий число компонент связности группы автоморфизмов конечно.Библиография: 12 названий.
Математический сборник. 2024;215(10):89-113
pages 89-113 views

Двусторонняя оценка производной суммы ряда по синусам с выпуклой последовательностью коэффициентов

Попов А.Ю.

Аннотация

Даны оценки модуля производной суммы произвольного синус-ряда с выпуклой последовательностью коэффициентов. Оценка сверху асимптотически получена, а снизу – точна по порядку.Библиография: 13 названий.
Математический сборник. 2024;215(10):114-145
pages 114-145 views

Разреженное восстановление в некоторых функциональных классах в интегральных нормах

Темляков В.Н.

Аннотация

Эта работа является прямым продолжением недавних работ автора. В этой работе мы продолжаем анализировать свойства аппроксимации и восстановления по системам, удовлетворяющим условию универсальной дискретизации по значениям в точках и специальному условию безусловности. Кроме того, мы предполагаем, что подпространство, натянутое на нашу систему, удовлетворяет некоторым неравенствам Никольского. В основном мы изучаем восстановление с ошибкой, измеренной в норме $L_p$ для $2\le p<\infty$. Мы применяем мощный нелинейный метод приближения – алгоритм слабого ортогонального преследования (АСОП) (Weak Orthogonal Matching Pursuit (WOMP)), который также известен под названием слабый ортогональный жадный алгоритм (СОЖА) (Weak Orthogonal Greedy Algorithm (WOGA)). Мы устанавливаем, что АСОП, основанный на точках, которые дают хорошую универсальную дискретизацию в $L_2$, обеспечивает хорошее восстановление в норме $L_p$ для $2\le p<\infty$. Для наших алгоритмов восстановления мы получаем как неравенства Лебега для индивидуальных функций, так и оценки ошибок для специальных функциональных классов функций многих переменных. В этой работе для того, чтобы получить новые результаты о восстановлении по выборке (по значениям в точках), мы одновременно используем два глубоких и мощных метода: неравенства типа Лебега для АСОП и теорию универсальной дискретизации по значениям в точках. Библиография: 19 названий.
Математический сборник. 2024;215(10):146-166
pages 146-166 views

Симплектическая редукция и лагранжевы подмногообразия в $\operatorname{Gr}(1, n)$

Тюрин Н.А.

Аннотация

В работе построены новые примеры лагранжевых подмногообразий комплексного грассманиана $\operatorname{Gr}(1, n)$, снабженного стандартной кэлеровой формой. Схема построения исходит из двух фактов: во-первых, мы предлагаем естественное соответствие между лагранжевыми подмногообразиями в симплектическом многообразии, являющимся результатом симплектической редукции, и лагранжевыми подмногообразиями большого симплектического многообразия с гамильтоновым действием группы, к которому применяется эта редукция; во-вторых, мы показываем, что при некотором подборе порождающих действия $\mathrm T^k$ при $k=2, …, n-1$ на $\operatorname{Gr}(1, n)$ и подходящих значениях отображений моментов имеется изоморфизм $\operatorname{Gr}(1, n)//\mathrm T^k \cong \operatorname{tot}(\mathbb{P}(\tau) \times …\times\mathbb{P}(\tau) \to \operatorname{Gr}(1, n-k))$, где справа стоит тотальное пространство прямого произведения $k$ копий проективизации тавтологического расслоения $\tau \to \operatorname{Gr}(1, n-k)$. Комбинируя эти два факта мы получаем нижнюю оценку на число топологически различных гладких лагранжевых подмногообразий в исходном грассманиане $\operatorname{Gr}(1, n)$.Библиография: 5 названий.
Математический сборник. 2024;215(10):167-182
pages 167-182 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».