Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 213, No 10 (2022)

Asymptotics for problems in perforated domains with Robin nonlinear condition on the boundaries of cavities

Borisov D.I., Mukhametrakhimova A.I.

Abstract

A boundary-value problem for a second-order elliptic equation with variable coefficients is considered in a multidimensional domain with periodic perforation by small cavities arranged along a fixed hypersurface at small distances one from another. The distances are proportional to a small parameter $\varepsilon$, and the linear sizes of the cavities are proportional to $\varepsilon\eta(\varepsilon)$, where $\eta(\varepsilon)$ is a function taking values in the interval $[0,1]$. The main result is a complete asymptotic expansion for the solution of the perturbed problem. The asymptotic expansion is a combination of an outer and an inner expansion; it is constructed using the method of matched asymptotic expansions. Both outer and inner expansions are power expansions in $\varepsilon$ with coefficients depending on $\eta$. These coefficients are shown to be infinitely differentiable with respect to $\eta\in(0,1]$ and uniformly bounded in $\eta\in[0,1]$.Bibliography: 38 titles.
Matematicheskii Sbornik. 2022;213(10):3-59
pages 3-59 views

Derivative of the Minkowski function: optimal estimates

Gayfulin D.R.

Abstract

It is well known that the derivative of the Minkowski function $?(x)$, if it exists, can take only two values, $0$ and $+\infty$. It is also known that the value of $?'(x)$ at a point $x=[0;a_1,a_2,…,a_t,…]$ is related to the limiting behaviour of the arithmetic mean $(a_1+a_2+…+a_t)/t$. In particular, as shown by Moshchevitin and Dushistova, if $a_1+a_2+…+a_t>(\kappa_2+\varepsilon)t$, where $\varepsilon>0$ and $\kappa_2\approx 4.4010487$ is some explicitly given constant, then $?'(x)=0$. They also showed that $\kappa_2$ cannot be replaced by a smaller constant. We consider the dual problem: how small can the quantity $\kappa_2t-a_1+a_2+…+a_t$ be if it is known that $?'(x)=0$? We obtain optimal estimates in this problem.Bibliography: 9 titles.
Matematicheskii Sbornik. 2022;213(10):60-89
pages 60-89 views

Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class

Ivanov A.O., Tuzhilin A.A.

Abstract

We show that any bounded metric space can be embedded isometrically in the Gromov-Hausdorff metric class $\operatorname{\mathcal{GH}}$. This is a consequence of the description of the local geometry of $\operatorname{\mathcal{GH}}$ in a sufficiently small neighbourhood of a generic metric space, which is of independent interest. We use the techniques of optimal correspondences and their distortions.Bibliography: 22 titles.
Matematicheskii Sbornik. 2022;213(10):90-107
pages 90-107 views

Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture

Lyamkin M.V.

Abstract

Using growth in $\mathrm{SL}_2(\mathbb{F}_p)$ we prove that for every prime number $p$ and any positive integer $u$ there are positive integers $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, and $a < p$, $(a, p)=1$, such that the partial quotients of the continued fraction of $a/q$ are bounded by an absolute constant.Bibliography: 21 titles.
Matematicheskii Sbornik. 2022;213(10):108-129
pages 108-129 views

A well-posed setting of the problem of solving systems of linear algebraic equations

Tyrtyshnikov E.E.

Abstract

Tikhonov's setting of the problem of solving systems of linear algebraic equations that are equivalent in accuracy is investigated. The problem is shown to be well posed in this setting.Bibliography: 5 titles.
Matematicheskii Sbornik. 2022;213(10):130-138
pages 130-138 views

Uniformly and locally convex asymmetric spaces

Tsar'kov I.G.

Abstract

The nonemptyness of the intersections of nested systems of convex bounded closed subsets of uniformly convex asymmetric spaces is studied. The density properties of the points of existence and points of approximative uniqueness are examined for nonempty closed subsets of uniformly convex asymmetric spaces. Problems of the existence and stability of Chebyshev centres are considered; therelationships between $\gamma$-suns, suns and the existence of best approximants are investigated. Sufficient conditions for radial $\delta$-solarity are obtained.Bibliography: 27 titles.
Matematicheskii Sbornik. 2022;213(10):139-166
pages 139-166 views

The convex hull and the Caratheodory number of a set in terms of the metric projection operator

Shklyaev K.S.

Abstract

We prove that each point of the convex hull of a compact set $M$ in a smooth Banach space $X$ can be approximated arbitrarily well by convex combinations of best approximants from $M$ to $x$ (values of the metric projection operator $P_M(x)$), where $x \in X$. As a corollary, we show that the Caratheodory number of a compact set $M \subset X$ with at most $k$-valued metric projection $P_M$ is majorized by $k$, that is, each point in the convex hull of $M$ lies in the convex hull of at most $k$ points of $M$.Bibliography: 26 titles.
Matematicheskii Sbornik. 2022;213(10):167-184
pages 167-184 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».