Electron transport and field electron emission mechanisms in 2D noncrystalline hetero structures with quantum barrier

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Impact of the depth of a quantum barrier in the form of a tunnel-thin charge-depletion carbon layer in the enriched noncrystalline carbon template on non-dissipative transport and field electron emission has been studied. It has been shown that cross-current nonlinearities in current variables in heterostructures with static low-field electric effects and current-voltage curve parameters of the field electron emission in the strong pulse electric fields with microsecond duration are determined by the parameters of quantum barrier and by the implementation of resonant tunneling conditions with different zero levels of size quantization energy.

Full Text

Restricted Access

About the authors

G. Ya. Krasnikov

Joint-Stock Company “Scientific-Research Institute of Molecular Electronics”

Email: vbokarev@niime.ru
Russian Federation, Zelenograd

V. P. Bokarev

Joint-Stock Company “Scientific-Research Institute of Molecular Electronics”

Author for correspondence.
Email: vbokarev@niime.ru
Russian Federation, Zelenograd

G. S. Teplov

Joint-Stock Company “Scientific-Research Institute of Molecular Electronics”

Email: vbokarev@niime.ru
Russian Federation, Zelenograd

R. K. Yafarov

Saratov branch-office of the Kotelnikov V. A. Institute for Radiotechnics and Electronics of the Russian Academy of Sciences

Email: pirpc@yandex.ru
Russian Federation, Saratov

References

  1. Jin-Woo Han, Jae Sub Oh and M. Meyyappan. Vacuum nanoelectronics: Back to the future? — Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100, 213505 (2012). http://dx.doi.org/10.1063/1.4717751.
  2. Fowler R.H., Nordheim L.W. Electronemission in intense electric fields // Proc. R. Soc. London. A. 1928. V. 119. P. 173–181.
  3. Патент RU2 455 724 C1. Опубликовано: 10.07.2012. Бюл. № 19. Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий. Авторы: Красников Г.Я., Зайцев Н.А., Орлов С.Н., Хомяков И.А., Яфаров Р.К.
  4. Marcus R.B., Ravi T.S., Gmitter T. et all. Formation of silicon tips with < 1 nm radius // Applied Physics Letters. 1990. Vol. 56, № 3. P. 236–238.
  5. Фурсей Г.Н., Поляков М.А., Кантонистов А.А., и др. // ЖТФ. 2013. Т. 83. № 6. С. 71.
  6. Panda K., Hyeok J.J., Park J.Y., et al. // Sci. Rep. 2007. № 7. P. 16325.
  7. Sobaszek M., Siuzdak K., Ryl J., et al. // J. Phys. Chem. C. 2017. V. 121. № 38. P. 20821.
  8. Яфаров Р.К., Сторублев А.В. Долговременная воспроизводимость эмиссионных характеристик алмазографитовых полевых источников электронов в нестационарных вакуумных условиях эксплуатации // Письма в ЖТФ. 2021. Т. 47, вып. 24. С. 17–19.
  9. Блохинцев Д.И. Основы квантовой механики. М.: Наука, 1٩83.
  10. Бонч-Бруевич В.Л, Калашников С.Г. Физика полупроводников. М.: Наука, 1٩77. 672 с.
  11. Пул Ч. – мл., Оуэнс Ф. Нанотехнологии. Москва.: Техносфера, 2006. 336 с.
  12. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники. Москва. Физматкнига, 2006. 496 с.
  13. Успехи наноинженерии: электроника, материалы, структуры. Под ред. Дж. Дэвиса, М. Томсона. Москва.: Техносфера, 2011. 491 с.
  14. Яфаров Р.К. Физика СВЧ вакуумно-плазменных нанотехнологий. М.: Физматлит, 2009. 216 с.
  15. Яфаров Р.К. // Письма в ЖТФ. 2019. Т. 45. № 9. С. 3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of transverse currents (a) and their differences (b) on the thickness of the depletion layer of two-layer heterostructures with reverse (1) and forward (2) connections of the power source.

Download (126KB)
3. Fig. 2. I-V characteristics (a) and transverse currents (b) at voltages of 30 (1) and 50 V (2) in three-layer heterostructures with different thicknesses of depletion layers, nm: 1 – 5; 2 – 10; 3 – 15; 4 – 20; 5 – 0.

Download (139KB)
4. Fig. 3. Field-voltage characteristics of two (a) and three-layer (b) heterostructures depending on the thickness of the depletion layer, nm: 1 – 5; 2 – 10; 3 – 15; 4 – 0.

Download (121KB)
5. Fig. 4. Dependences of field current densities (1), emission activation thresholds (2) (a), slope of the current-voltage characteristic (1) and intervals of permissible electric field strengths (2) (b) on the thickness of the depletion layers of two-layer heterostructures.

Download (142KB)
6. Fig. 5. Dependences of field current densities (1), emission activation thresholds (2) (a), I-V characteristic steepness (1) and intervals of permissible electric field strengths (2) (b) on the thickness of depletion layers of three-layer heterostructures.

Download (146KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».