Investigation of ways to synthesize concurrent error-detection circuits based on boolean signals correction using uniform separable codes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of the synthesis of concurrent error-detection circuit based on the Boolean signals correction using uniform separable codes are investigated. Three types of structures are considered: type I – structure with correction of part of the signals from the outputs of the diagnostic object forming the check symbols of a given code in the concurrent error-detection circuit; type II – structure with correction of part of the signals from the outputs of the diagnostic object forming the data symbols of a given code in the concurrent error-detection circuit; type III – structure with signal correction from all outputs of the diagnostic object. For structures of all types, formulas are given for determining the number of ways to synthesize concurrent error-detection circuit based on the Boolean signals correction using a given code. New properties of structures have been established that characterize the features of the growth in the number of methods for synthesizing concurrent error-detection circuit with an increase in the number of outputs forming data and check symbols. Patterns have been found that allow in practice to estimate the number of ways to synthesize concurrent error-detection circuit based on the Boolean signals correction using uniform separable codes in order to select the best one according to specified criteria. Examples are given to demonstrate the effectiveness of using the found patterns.

Full Text

Restricted Access

About the authors

D. V. Efanov

Peter the Great Saint Petersburg Polytechnic University; Russian University of Transport; Tashkent State Transport University; «Transport and Construction Safety» LLC

Author for correspondence.
Email: TrES-4b@yandex.ru
Russian Federation, St. Petersburg; Moscow; Uzbekistan, Tashkent; St. Petersburg

E. I. Yelina

Peter the Great Saint Petersburg Polytechnic University

Email: eseniya-elina@mail.ru
Russian Federation, St. Petersburg

References

  1. Sogomonyan E.S. and Slabakov E.V. Self-Checking Devices and Fault-Tolerant Systems // in Moscow: Radio i Svyaz’, pp. 208, 1989 (in Russian).
  2. Mikoni S. Top Level Diagnostic Models of Complex Objects // Lecture Notes in Networks and Systems. – 2022. – Vol. 442. – Pp. 238–249. doi: 10.1007/978-3-030-98832-6_21.
  3. Drozd A., Kharchenko V., Antoshchuk S., Sulima J., Drozd M. Checkability of the Digital Components in Safety-Critical Systems: Problems and Solutions // Proceed-ings of 9th IEEE East-West Design & Test Symposium (EWDTS’2011), Sevastopol, Ukraine, 2011, pp. 411–416. doi: 10.1109/EWDTS.2011.6116606.
  4. Drozd O., Perebeinos I., Martynyuk O., Zashcholkin K., Ivanova O., Drozd M. Hidden Fault Analysis of FPGA Projects for Critical Applications // Proceedings of the IEEE International Conference on Advanced Trends in Radioelectronics, Tele-communications and Computer Engineering (TCSET), 25–29 February 2020, Lviv-Slavsko, Ukraine, paper 142. doi: 10.1109/TCSET49122.2020.235591.
  5. Göessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Con-current Checking: Edition 1. – Dordrecht: Springer Science+Business Media B.V., 2008, 184 p.
  6. Borecký J., Kohlík M., Kubátová H. Parity Driven Reconfigurable Duplex System // Microprocessors and Microsystems. – 2017. – Vol. 52. – Pp. 251–260, doi: 10.1016/j.micpro.2017.06.015.
  7. Tshagharyan G., Harutyunyan G., Shoukourian S., Zorian Y. Experimental Study on Hamming and Hsiao Codes in the Context of Embedded Applications // Proceed-ings of 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, Serbia, September 29 – October 2, 2017, pp. 25–28. doi: 10.1109/EWDTS.2017.8110065.
  8. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Summation codes for technical diagnostics systems. Vol. 1: Classical Berger codes and their modifications. – M.: Nauka, 2020, 383 p. (in Russian).
  9. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Summation codes for technical diagnostics systems. Vol. 2: Weighted codes with summation. – M.: Nauka, 2021, 455 p. (in Russian).
  10. Stempkovsky A.L., Zhukova T.D., Telpukhov D.V., Gurov S.I. CICADA: A New Tool to Design Circuits with Correction and Detection Abilities // International Siberian Conference on Control and Communications (SIBCON), 13-15 May 2021, Kazan, Russia pp. 1–5. doi: 10.1109/SIBCON50419.2021.9438900.
  11. Nicolaidis M. On-Line Testing for VLSI: State of the Art and Trends // Integra-tion, the VLSI Journal, 1998, Vol. 26, Issues 1-2, pp. 197–209. doi: 10.1016/S0167-9260(98)00028-5.
  12. Mitra S., McCluskey E.J. Which Concurrent Error Detection Scheme to Сhoose? // Proceedings of International Test Conference, 2000, USA, Atlantic City, NJ, 03–05 October 2000, pp. 985–994. doi: 10.1109/TEST.2000.894311.
  13. Efanov D.V., Sapozhnikov Vl.V. and Sapozhnikov Vl.V. On Summation Code Properties in Functional Control Circuits // Automation and Remote Control, 2010, no. 6, pp. 155–162. (in Russian).
  14. Goessel M., Morozov A.V., Sapozhnikov Vl.V. and Sapozhnikov V.V. Checking Combinational Circuits by the Method of Logic Complement // Automation and Remote Control, vol. 66, No 8, pp. 1336–1346, 2005. (in Russian).
  15. Gessel M., Morozov A.V., Sapozhnikov V.V. and Sapozhnikov V.V. Logic Complement a New Method of Checking the Combinational Circuits // Automation and Remote Control, vol. 64, No 1, pp. 153–161, 2003 (in Russian).
  16. Sen S.K. A Self-Checking Circuit for Concurrent Checking by 1-out-of-4 code with Design Optimization using Constraint Don’t Cares // National Conference on Emerging trends and advances in Electrical Engineering and Renewable Energy (NCEEERE 2010), Sikkim Manipal Institute of Technology, Sikkim, held during 22–24 December, 2010.
  17. Das D.K., Roy S.S., Dmitiriev A., Morozov A., Gössel M. Constraint Don’t Cares for Optimizing Designs for Concurrent Checking by 1-out-of-3 Codes // Pro-ceedings of the 10th International Workshops on Boolean Problems, Freiberg, Ger-many, September, 2012, pp. 33–40.
  18. Pivovarov D.V. Formation of Concurrent Error Detection Systems in Multiple-Output Combinational Circuits Using the Boolean Complement Method Based on Constant-Weight Codes // Transport Automation - 2018. – Vol. 4. – No 1. – pp. 131–149 (in Russian).
  19. Morozov M., Saposhnikov V.V., Saposhnikov V.V., Goessel M. New Self-Checking Circuits by Use of Berger-codes // Proceedings of 6th IEEE International On-Line Testing Workshop, Palma De Mallorca, Spain, 3–5 July 2000, pp. 171–176.
  20. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. The Self-Checking Concur-rent Error-Detection Systems Synthesis Based on the Boolean Complement to the Bose-Lin Codes with the Modulo Value M=4 // Electronic Modeling. – 2021. – Vol. 43. – Issue 1. – Pp. 28–45. doi: 10.15407/emodel.43.01.028.
  21. Efanov D.V., Zueva M.V. Hsiao Codes Properties in Discrete Devices Technical Diagnostics Systems // Programmnaya Ingeneria, 2023, vol. 14, No 7, pp. 339—349. doi: 10.17587/prin.14.339-349 (in Russian).
  22. Saposhnikov Vl.V., Dmitriev A., Goessel M., Saposhnikov Vl.V. Self-Dual Parity Checking – a New Method for on Line Testing // Proceedings of 14th IEEE VLSI Test Symposium, USA, Princeton, 1996, pp. 162–168.
  23. Gessel M., Dmitriev A.V., Sapozhnikov Vl.V., Sapozhnikov V.V. Fault detection in combinational circuits using self-dual control // Automation and telemechanics, 2000, No 7, pp. 140–149 (in Russian).
  24. Efanov D., Sapozhnikov V., Sapozhnikov Vl., Osadchy G., Pivovarov D. Self-Dual Complement Method up to Constant-Weight Codes for Arrangement of Combi-national Logical Circuits Concurrent Error-Detection Systems // Proceedings of 17th IEEE East-West Design & Test Symposium (EWDTS’2019), Batumi, Georgia, September 13–16, 2019, pp. 136–143. doi: 10.1109/EWDTS.2019.8884398.
  25. Efanov D.V., Pivovarov D.V. The Hybrid Structure of a Self-Dual Built-In Control Circuit for Combinational Devices with Pre-Compression of Signals and Checking of Calculations by Two Diagnostic Parameters // Proceedings of 19th IEEE East-West Design & Test Symposium (EWDTS’2021), Batumi, Georgia, September 10–13, 2021, pp. 200–206. doi: 10.1109/EWDTS52692.2021.9581019.
  26. Pashukov A.V. Application of weight-based sum codes at the synthesis of circuits for built-in control by Boolean complement method // Automation in transport. – 2022. – Vol. 8. – No 1. – pp. 101–114. doi: 10.20295/2412-9186-2022-8-01-101-114 (in Russian).
  27. Efanov D.V., Yelina Y.I. Study of algorithms for synthesis of self-checking digital devices based on Boolean correction of signals using weighted Bose—Lin codes // Automation in transport. – 2024. – Vol.10. – No 1. – pp. 74–99. doi: 10.20296/2412-9186-2024-10-01-74-99. (in Russian).
  28. Efanov D.V. The Synthesis of Self-Checking Combinational Devices on the Basis of Codes with the Effective Symmetrical Error Detection // Information technology. – 2023. – Vol. 29. – No 10. – pp. 503–511. doi: 10.17587/it.29.503-511. (in Russian).
  29. Efanov D.V., Yelina Y.I. Synthesis of Concurrent Error-Detection Circuits Based on Boolean Signals Correction Using Modular Weight-Based Sum Codes // Proceedings of the 2024 Conference of Young Researchers in Electrical and Electronic Engineering (EICon), 29–30 January 2024, St. Petersburg, Russia, pp. 350–355. doi: 10.1109/ElCon61730.2024.10468328.
  30. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Hamming codes in concurrent error detection systems of logic devices / Monograph. – St. Petersburg: Nauka, 2018, 151 p. (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Formula 4

Download (82KB)
3. Fig. 1. Cascades of transformation elements in the structures of the organization of the SVC based on the LKS using (m, k)-codes.

Download (308KB)
4. Fig. 2. Given devices F1(x) and F2(x).

Download (163KB)
5. Fig. 3. The principle of organizing control of calculations for the example under consideration.

Download (208KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».