Electrical conductivity of a thin polycrystalline film considering various specularity coefficients

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An expression for the electrical conductivity of a thin polycrystalline film is obtained. To solve the problem, a kinetic equation is used to approximate the relaxation time, considering electron scattering at the boundaries of polycrystalline film crystallites. The effect of surface scattering of charge carriers is described by diffuse-specular Fuchs boundary conditions. The limiting cases of a degenerate and non-degenerate electron gas are considered. The dependence of the electrical conductivity on the scattering intensity at the crystallite boundary and on the electromagnetic wavelength inside the film is analyzed. The obtained results are compared with the known experimental data for the silicon layer.

About the authors

I. A. Kuznetsova

P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: romanov.yar357@mail.ru
Yaroslavl, Russia

D. N. Romanov

P.G. Demidov Yaroslavl State University

Email: romanov.yar357@mail.ru
Yaroslavl, Russia

References

  1. Nurdinova R.A., Kasimakhunova A.M. AHV elements with birefringence // Uzbek Jornal of Physics. 2017. V. 19. P. 302–306.
  2. Pyataykin I.I. The influence of the internal dimensional effect in polycrystalline metal films on the coefficients of reflection, transmission and absorption of microwave electromagnetic waves in them // Journal of Radio Electronics. 2020. № 10. https://doi.org/10.30898/1684-1719.2020.10.5
  3. Galchenkov L.A., Pyataikin I.I. Enhancement of conduction electron reflection specularity in gold films coated with Langmuir-Blodgett nanolayers // Journal of Radio Electronics. 2019. № 11. https://doi.org/10.30898/1684-1719.2019.11.6
  4. Khorin I., Orlikovsky N., Rogozhin A., Tatarintsev A., Pronin S., Andreev V., Vdovin V. Optical coefficients of nanometer-thick copper and gold films in microwave frequency range // Proc. SPIE. 2016. V. 10224. P. 1022407. https://doi.org/10.1117/12.2266504
  5. Kaplan A.E. Metallic nanolayers: a sub-visible wonderland of optical properties [Invited] // J. Opt. Soc. Am. B. 2018. V. 35. P. 1328–1340. https://doi.org/ 10.1364/JOSAB.35.001328
  6. Yusupova D.A., Fozilova M.D. Main characteristics and features of semiconductor film strain transducers // Scientific Progress. 2021. V. 2, P. 441–447.
  7. Nakate U.T. et al. WO3 nanorods structures for high-performance gas sensing application // Materials Letters. 2021. V. 299. P. 130092. https://doi.org/ 10.1016/j.matlet.2021.130092
  8. Huang Y. et al. Switchable band-pass filter for terahertz waves using VO2-based metamaterial integrated with silicon substrate // Opt. Rev. Springer Japan. 2021. V. 28. P. 92–98. https://doi.org/10.1007/s10043-020-00637-1
  9. Long L. et al. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer // Mater. Today Energy. Elsevier Ltd. 2019. V. 13, P. 214–220. https://doi.org/ 10.1016/j.mtener.2019.05.017
  10. Bhattacharya S. Towards 30% power conversion efficiency in thin-silicon photonic-crystal solar cells // Physical Review Applied. 2019. V. 11, P. 014005. https://doi.org/10.1103/PhysRevApplied.11.014005
  11. Kalinovskii V.S., Kontrosh E.V., Andreeva A.V., Andreev V.M., Malyutina-Bronskaya V.V., Zalesskii V.B., Lemeshevskaya A.M., Kuzoro V.I., Khalimanovich V.I., Zaitseva M.K. Hybrid Solar Cells with a Sunlight Concentrator System // Technical Physics Letters. 2019. V. 45. P. 850–852. https://doi.org/10.1134/S1063785019080236
  12. Mayadas A.F. Electrical resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces // Phys. Rev. B. 1970. V. 1, P. 1382-1389. https://doi.org/10.1103/PhysRevB.1.1382
  13. Lanzillo N.A., Bajpai U., Garate I., Chen C.T. Size-Dependent Grain-Boundary Scattering in Topological Semimetals // Phys. Rev. Applied. 2022. V. 18. P. 034053. https://doi.org/10.1103/PhysRevApplied.18.034053
  14. Gall D. The search for the most conductive metal for narrow interconnect lines // J. Appl. Phys. 2020. V. 12. P. 050901. https://doi.org/10.1063/1.5133671
  15. Hempel H. et al. Predicting Solar Cell Performance from Terahertz and Mi-crowave Spectroscopy // Advanced Energy Materials. 2022. V. 12. https://doi.org/10.1002/aenm.202102776
  16. Kuznetsova I.A., Romanov D.N., Savenko O.V., Yushkanov A.A. Calculating the high-frequency electrical conductivity of a thin semiconductor film for different specular reflection coefficients of its surface // Russian Microelectronics. 2017. V. 46. № 4. P. 252–260. https://doi.org/10.1134/S1063739717040059
  17. Zavitaev E.V., Simonova T.È., Utkin A.I. Interaction of H-wave with the thin metal layer with generalized boundary conditions // Zhurnal Tekhnicheskoi Fiziki. 2023. V. 93. № 6. P. 735–739. https://doi.org/10.1134/S1063784224040492
  18. Utkin A.I., Yushkanov A.A. The effect of specular reflectances on the interaction of an electromagnetic E-wave with a thin metal film placed between two dielectric media // Optics and Spectroscopy. 2018. V. 124. № 2. P. 250–254. https://doi.org/10.1134/S0030400X18020194
  19. Kuznetsov P.A., Moskovsky S.B., Romanov D.N. Influence of isoenergetic surface on electrical conductivity and the Hall constant for a thin semiconductor film // Russian Microelectronics. 2022. V. 51. № 3. P. 218–229. https://doi.org/10.1134/S1063739722020068
  20. Zavitaev E.V., Rusakov O.V., Chukhleb E.P. The effect of paired collisions of charge carriers on electrical conductivity thin conductive layer // Zhurnal Tekhnicheskoi Fiziki. 2023. V. 93. № 11. P. 1561–1569. https://doi.org/10.1134/S1063784224060483
  21. Nhung L.T., Yushkanov A.A. Transverse electrical conductivity and dielectric constant of a polycrystalline metal // Zhurnal Tekhnicheskoi Fiziki. 2021. V. 91. № 6. P. 943–947. https://doi.org/10.21883/JTF.2021.06.50863.122-20
  22. MacHale J. et al. Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nm // J. Appl. Phys. 2019. V. 125. P. 225709. https://doi.org/10.1063/1.5098307

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».