Study of deposition modes of Cu2O films by RF magnetron sputtering for application in solar cell structures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The deposition of Cu2O films was carried out by radio-frequency (RF) magnetron sputtering in an oxygen-free environment at room temperature. The effect of the power and pressure in the chamber on the deposition rate, structural and optical properties of Cu2O films was studied. It was shown that the dependence of the Cu2O film deposition rate on the sputtering power is almost linear and increases slightly with increasing argon pressure in the chamber. It was found that all Cu2O films have a predominantly nanocrystalline structure consisting of columnar grains, the average size of which increases from 10 to 30 nm with an increase in the sputtering power from 25 to 100 W and in the chamber pressure from 3·10–3 to 7·10–3 mbar. At the same time, the Cu2O films have a relatively smooth surface with an average roughness in the range from 4.5 to 5.9 nm. It has been established that the optimal sputtering power for deposition of Cu2O films with the largest grain size and low surface roughness is 75 W and chamber pressure of 5·10–3 mbar. It has been shown that under this magnetron sputtering mode, the Cu2O film has two main diffraction peaks, which correspond to the orientations of the crystal planes (111) and (200) for the cubic Cu2O phase, as well as high optical absorption of up to about 600 nm and a band gap of 2.18 eV. The models of solar cells based on the ZnO/Cu2O heterojunction were manufactured by magnetron sputtering at room temperature and their current-voltage characteristics were studied. The obtained results can be used in the development of structures and technological processes for the formation of solar cells on glass and flexible substrates using the magnetron sputtering method.

全文:

受限制的访问

作者简介

A. Saenko

Southern Federal University

编辑信件的主要联系方式.
Email: avsaenko@sfedu.ru
俄罗斯联邦, Taganrog, 347928

V. Zheits

Southern Federal University

Email: avsaenko@sfedu.ru
俄罗斯联邦, Taganrog, 347928

Z. Vakulov

Southern Federal University

Email: avsaenko@sfedu.ru
俄罗斯联邦, Taganrog, 347928

V. Smirnov

Southern Federal University

Email: avsaenko@sfedu.ru
俄罗斯联邦, Taganrog, 347928

参考

  1. Lakshmanan A., Zachariah C. Alex, Meher S.R. Recent advances in cuprous oxide thin film based photovoltaics // Materials Today Sustainability. 2022. V. 20. P. 100244. https://doi.org/10.1016/j.mtsust.2022.100244
  2. Saenko A.V., Bilyk G.E., Smirnov V.A. Study of the Photovoltaic Parameters of Inorganic Solar Cells Based on Cu2O and CuO // Russian Microelectronics. 2024. V. 53(4). P. 319–328. https://doi.org/10.1134/S1063739724600407
  3. Zhigang Zang, Wensi Cai, Yong Zhou. Metal Oxide Semiconductors for Solar Cells // Metal Oxide Semiconductors: Synthesis, Properties, and Devices. 2023. Chapter 6. P. 171–210. https://doi.org/10.1002/9783527842551.ch6
  4. Subhash Chander, Surya Kant Tripathi. Recent advancement in efficient metal oxide-based flexible perovskite solar cells: a short review // Materials Advances. 2022. V. 3. P. 7198–7211. https://doi.org/10.1039/D2MA00700B
  5. Sinuo Chen, Lichun Wang, Chunlan Zhou, Jinli Yang. A review of Cu2O solar cell // Journal of Renewable and Sustainable Energy. 2023. V. 15. P. 062701. https://doi.org/10.1063/5.0167383
  6. Sven Ruhle, Assaf Y. Anderson, Hannah-Noa Barad, Benjamin Kupfer, Yaniv Bouhadana, Eli Rosh-Hodesh, Arie Zaban. All-Oxide Photovoltaics // Journal of Physical Chemistry Letters. 2012. V. 3. P. 3755–3764. https://doi.org/10.1021/jz3017039
  7. Amador Perez-Tomas. Functional Oxides for Photoneuromorphic Engineering: Toward a Solar Brain // Advanced Materials Interfaces. 2019. V. 6. P. 1900471. https://doi.org/10.1002/admi.201900471
  8. Saenko A.V., Bilyk G.E., Malyukov S.P. Research of the photoelectric parameters of ZnO/Cu2O heterojunction solar cells // St. Petersburg State Polytechnical University Journal: Physics and Mathematics. 2023. V. 16(31). P. 221–226. https://doi.org/10.18721/JPM.163.139
  9. Amador Perez-Tomas, Alba Mingorance, David Tanenbaum, Monica Lira-Cantu. Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells // The Future of Semiconductor Oxides in Next-Generation Solar Cells. 2018. V. 8. P. 267–356. https://doi.org/10.1016/B978-0-12-811165-9.00008-9
  10. Lakshmanan A., Zachariah C. Alex, Meher S.R. Cu2O thin films grown by magnetron sputtering as solar cell absorber layers // Materials Science in Semiconductor Processing. 2022. V. 148. P. 106818. https://doi.org/10.1016/j.mssp.2022.106818
  11. Kudryashov D.A., Gudovskikh A.S., Babichev A.V., Filimonov A.V., Mozharov A.M., Agekyan V.F., Borisov E.V., Serov A.Yu., Filosofov N.G. Nanoscale Cu2O Films: Radio-Frequency Magnetron Sputtering and Structural and Optical Studies // Semiconductors. 2017. V. 51(1). P. 110–114. https://doi.org/10.1134/S1063782617010110
  12. Al-Kuhaili M.F. Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O) // Vacuum. 2008. V. 82. P. 623–629. https://doi.org/10.1016/j.vacuum.2007.10.004
  13. Binghao Wang, Zhiqiang Chen, Feng Zhao. Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer // Sustainability. 2023. V. 15. P. 10876. https://doi.org/10.3390/su151410876
  14. FeiFan Yang, WenBo Peng, YiJian Zhou, Rong Li, GuoJiao Xiang, JinMing Zhang YueLiu, JiaHui Zhang, Yang Zhao, Hui Wang. Thermal optimization of defected Cu2O photon-absorbing layer and the steady p-Cu2O/n-Si photovoltaic application // Vacuum. 2022. V. 198. P. 110876. https://doi.org/10.1016/j.vacuum.2022.110876
  15. Jun-A Kim, Jung-Hwan Park, Sang-Geon Park, Chang-Sik Son, Young-Guk Son, Dong-Hyun Hwang. Effect of Substrate Temperature on Variations in the Structural and Optical Properties of Cu2O Thin Films Deposited via RF Magnetron Sputtering // Crystals. 2023. V. 13. P. 643. https://doi.org/10.3390/cryst13040643
  16. Dolai S., Das S., Hussain S., Bhar R., Pal A.K. Cuprous oxide (Cu2O) thin films prepared by reactive d.c. sputtering technique // Vacuum. 2017. V. 141. P. 296–306. http://doi.org/10.1016/j.vacuum.2017.04.033
  17. Qiang Yu, Huwei Zhao, Yuhong Zhao, Yue Zhao. The study of optical-electrical properties of ZnO/Cu2O(CuO)/Si heterojunctions // Physica B: Condensed Matter. 2024. V. 690. P. 416253. https://doi.org/10.1016/j.physb.2024.416253
  18. Zhigang Zang. Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films // Applied Physics Letters. 2018. V. 112. P. 042106. https://doi.org/10.1063/1.5017002
  19. Shijeesh M.R., Jayaraj M.K. Low temperature fabrication of CuxO thin-film transistors and investigation on the origin of low field effect mobility // Journal of Applied Physics. 2018. V. 123. P. 161538. https://doi.org/10.1063/1.4991812
  20. Marwa Abd-Ellah, Joseph P. Thomas, Lei Zhang, Kam Tong Leung. Enhancement of solar cell performance of p-Cu2O/n-ZnO-nanotube and nanorod heterojunction devices // Solar Energy Materials and Solar Cells. 2016. V. 152. P. 87–93. https://doi.org/10.1016/j.solmat.2016.03.022
  21. Teoman Ozdal, Hamide Kavak. Fabrication and characterization of ZnO/Cu2O heterostructures for solar cells applications // Superlattices and Microstructures. 2020. V. 146. P. 106679. https://doi.org/10.1016/j.spmi.2020.106679
  22. Grzegorz Wisz, Paulina Sawicka-Chudy, Maciej Sibinski, Dariusz Ploch, Mariusz Bester, Marian Cholewa, Janusz Wozny, Rostyslav Yavorskyi, Lyubomyr Nykyruy, Marta Ruszala. TiO2/CuO/Cu2O Photovoltaic Nanostructures Prepared by DC Reactive Magnetron Sputtering // Nanomaterials. 2022. V. 12. P. 1328. https://doi.org/10.3390/nano12081328
  23. Grzegorz Wisz, Paulina Sawicka-Chudy, Andrzej Wal, Maciej Sibinski, Piotr Potera, Rostyslaw Yavorsky, Lyubomyr Nykyruy, Dariusz Ploch, Mariusz Bester, Marian Cholewa, Olena M. Chernikova. Structure Defects and Photovoltaic Properties of TiO2:ZnO/CuO Solar Cells Prepared by Reactive DC Magnetron Sputtering // Aplied Sciences. 2023. V. 13. P. 3613. https://doi.org/10.3390/app13063613
  24. Abduev A.K., Akhmedov A.K., Asvarov A.S., Muslimov A.E., Kanevsky V.M. ZnO-based transparent conductive layers obtained by the magnetron sputtering of a composite cermet ZnO:Ga–Zn target: part 2 // Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. 2021. V. 15. P. 121–127. https://doi.org/10.1134/S1027451021010031
  25. Saenko A.V., Vakulov Z.E., Klimin V.S., Bilyk G.E., Malyukov S.P. Effect of Magnetron Sputtering Power on ITO Film Deposition at Room Temperature // Russian Microelectronics. 2023. V. 52(4). P. 297–302. https://doi.org/10.1134/ S1063739723700452
  26. Laurentiu Fara, Irinela Chilibon, Ornulf Nordseth, Dan Craciunescu, Dan Savastru, Cristina Vasiliu, Laurentiu Baschir, Silvian Fara, Raj Kumar, Edouard Monakhov, James P. Connolly. Complex Investigation of High Efficiency and Reliable Heterojunction Solar Cell Based on an Improved Cu2O Absorber Layer // Energies. 2020. V. 13. P. 4667. https://doi.org/10.3390/en13184667
  27. Saenko A.V., Bilyk G.E., Malyukov S.P. Modeling of an oxide solar cell based on a ZnO/Cu2O heterojunction // Applied Physics. 2023. № 4. P. 66–77. https://doi.org/10.51368/1996-0948-2023-4-66-77
  28. Bin Sun, Hao Chen, Kang Yan, Xiao-Dong Feng. Numerical investigation of the Cu2O solar cell with double electron transport layers and a hole transport layer // Optical Materials. 2022. V. 131. P. 112642. https://doi.org/10.1016/j.optmat.2022.112642

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependences of the deposition rate of Cu2O films on the power and pressure in the chamber during RF magnetron sputtering

下载 (286KB)
3. Fig. 2. SEM images of the surface morphology of Cu2O films at magnetron sputtering power from 25 to 100 W (pressure 5 10–3 mbar)

下载 (841KB)
4. Fig. 3. SEM images of the surface morphology of Cu2O films at a chamber pressure of 3 10–3 to 7 10–3 mbar (power 75 W) and a transverse cleavage with a thickness of 92 nm

下载 (829KB)
5. Fig. 4. AFM image of the Cu2O film surface (power 75 W, pressure 5 10–3 mbar) and the dependence of surface roughness on the sputtering power

下载 (498KB)
6. Fig. 5. X-ray diffraction pattern of Cu2O film (power 75 W, pressure 5 10–3 mbar)

下载 (222KB)
7. Fig. 6. Survey XPS spectrum and high-resolution spectra of copper and oxygen levels of Cu2O film (power 75 W, pressure 5 10–3 mbar)

下载 (336KB)
8. Fig. 7. Transmission spectrum and determination of the band gap of the Cu2O film (power 75 W, pressure 5 10–3 mbar)

下载 (212KB)
9. Fig. 8. Schematic structure, experimental models and volt-ampere characteristics of solar cells based on ZnO/Cu2O heterojunction

下载 (353KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».