Analysis of the Switching Characteristics of MRAM Cells Based on Materials with Uniaxial Anisotropy
- 作者: Iusipova I.A.1,2
-
隶属关系:
- National Research University of Electronic Technology (MIET)
- Institute for Design Problems in Microelectronics, Russian Academy of Sciences
- 期: 卷 52, 编号 15 (2018)
- 页面: 1982-1988
- 栏目: Elements of Integral Electronics
- URL: https://journal-vniispk.ru/1063-7826/article/view/205246
- DOI: https://doi.org/10.1134/S1063782618150162
- ID: 205246
如何引用文章
详细
Magnetoresistive random access memory (MRAM) has some advantages over other types of memory. However, MRAM has one substantial drawback: the current density and magnetic field that must be applied to switch the spin-valve free layer inside an MRAM cell are too high. The dependence of the current density and switching magnetic field on the magnetic parameters of the material from which the ferromagnetic layers of a spin valve are fabricated is therefore analyzed. A comparison of the critical characteristics of a spin valve with longitudinal anisotropy shows that cobalt, iron, and alloys of them; cobalt ferroborates; and alloys of cobalt with gadolinium, are promising materials for fabricating spin valves. Bifurcation diagrams of equations that describe the valve switching process are presented and analyzed. The four optimum switching modes of a valve are selected, based on an investigation of the dynamics of the magnetization vector. The magnitudes of the external magnetic field and controlling injection current that correspond to stable MRAM cell switching are compared for a variety of materials. The switching time of an MRAM cell is estimated numerically, and the conditions for its optimum speed are determined. It is established that the most promising materials for spin-valve fabrication are Fe40Co40B20 and Co80Gd20, annealed at 300 and 200°C, respectively.
作者简介
Iu. Iusipova
National Research University of Electronic Technology (MIET); Institute for Design Problems in Microelectronics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: linda_nike@mail.ru
俄罗斯联邦, Moscow, 124498; Moscow, 124681
补充文件
