THE EFFECT OF THE MESOCOSM DIAMETER ON THE RESULTS OF STUDIES WITH EARTHWORMS USING THE EXAMPLE OF APORRECTODEA CALIGINOSA
- Авторлар: Romanchuk R.R.1, Rudenko V.N.2, Golovanova E.V.1,2
-
Мекемелер:
- Research Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University
- Dostoevsky Omsk State University
- Шығарылым: № 3 (2025)
- Беттер: 1-11
- Бөлім: Articles
- URL: https://journal-vniispk.ru/2500-0578/article/view/356367
- DOI: https://doi.org/10.21685/2500-0578-2025-3-4
- ID: 356367
Дәйексөз келтіру
Толық мәтін
Аннотация
The study of the effect of mesocosm diameter on the population parameters of Aporrectodea caliginosa earthworms and soil properties is necessary for standardization of soil-ecological experiment methods. The aim of the work is to determine the optimal mesocosm diameter that provides reliable results at minimal cost. The experiment was conducted in mesocosms with a diameter of 10, 15 and 25 cm filled with alluvial sod soils. The morphometric parameters of worms (length, thickness, weight), population parameters (survival, productivity, biomass), and soil properties (pH, organic matter content) were studied. Statistical analysis was performed using ANOVA and Tukey's test. The effect of mesocosm diameter is significant only for morphometric parameters, but not for population ones. Acidity and organic matter content were dependent on the presence of earthworms and the soil horizon, but not on the mesocosm diameter. In experiments with earthworms, it is necessary to take into account the mesocosm diameter when studying the morphometry of individuals.
Негізгі сөздер
Авторлар туралы
R. Romanchuk
Research Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University
Хат алмасуға жауапты Автор.
Email: r.romanchuk@omgpu.ru
Omsk, Russia
V. Rudenko
Dostoevsky Omsk State University
Email: r.romanchuk@omgpu.ru
Omsk, Russia
E. Golovanova
Research Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University; Dostoevsky Omsk State University
Email: r.romanchuk@omgpu.ru
Omsk, Russia
Әдебиет тізімі
- Odum E.P. The Mesocosm. BioScience. 1984;34(9):558–562. 2. Bruckner A., Wright J., Kampichler C. et al. A method of preparing mesocosms for assessing complex biotic processes in soils. Biol Fertil Soils. 1995;19(2–3):257–262.
- Gibson K.S., Johnson N.C., Neher D.A., Antoninka A.J. A field mesocosm method for manipulation of soil mesofauna communities and repeated measurement of their ecological functions over months to years. Pedobiologia. 2025;108:151019.
- Svendsen C., Weeks J.M. Low-Cost Field Mesocosm for Ecotoxicological Studies on Earthworms. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 1997;117(1):31–40.
- Hale C.M., Frelich L.E., Reich P.B., Pastor J. Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study. Oecologia. 2008;155(3):509–518.
- Ashwood F., Butt K.R., Doick K.J., Vanguelova E.I. Interactive effects of composted green waste and earthworm activity on tree growth and reclaimed soil quality: A mesocosm experiment. Applied Soil Ecology. 2017;119:226– 233.
- Ganault P., Nahmani J., Capowiez Y. et al. Earthworms and plants can decrease soil greenhouse gas emissions by modulating soil moisture fluctuations and soil macroporosity in a mesocosm experiment. PLOS ONE. 2024;19(2):e0289859.
- Laossi K.-R., Noguera D.C., Decäens T., Barot S. The effects of earthworms on the demography of annual plant assemblages in a long-term mesocosm experiment. Pedobiologia. 2011;54(2):127–132.
- Villenave C., Rabary B., Kichenin E. et al. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar): A Mesocosm Experiment. Applied and Environmental Soil Science. 2010;2010:1–7.
- Golovanova E.V., Kniazev S.Yu., Karaban K. et al. First Short-Term Study of the Relationship between Native and Invasive Earthworms in the Zone of Soil Freezing in Western Siberia – Experiments in Mesocosms. Diversity. 2023;15(2):248.
- Novak A. Biotopical distribution of earthworms of Lumbricidae family in Alma-Ata region. Vestnik of Ulyanovsk SAA. 2015;32(4):78–83.
- Miito G.J., Alege F., Harrison J., Ndegwa P. Influence of earthworm population density on the performance of vermifiltration for treating liquid dairy manure. J of Env Quality. 2024;53(6):1176–1187.
- Aporrectodea caliginosa (Savigny, 1826) in GBIF Secretariat (2023). GBIF Backbone Taxonomy. Available at: https://www.gbif.org/species/2307759
- Vsevolodova-Perel′ T.S. Dozhdevyye chervi fauny Rossii: Kadastr i opredelitel′ = Earthworms of the Russian fauna: Cadastre and identification guide. Moscow: Nauka, 1997:98. (In Russ.)
- Golovanova E.V., Knyazev S.Yu., Babiy K.A., Tsvirko E.I. Spread of the alien species of earthworms Aporrectodea salyginosa in natural habitats of the Omsk region. Poznaniye i deyatel′nost′: ot proshlogo k nastoyashchemu: materialy II Vseros. mezhdistsipl. nauch. konf. = Cognition and activity: from past to present: proceedings of the AllRussian interdisciplinary scientific conference. Omsk, 2020:299–302. (In Russ.)
- Golovanova E.V., Romanchuk R.R., Shcherbakov V.E. et al. Distribution and Abundance of European Earthworm Species in Irtysh Forests. Russ J Ecol. 2024;55(6):548–561.
- Bart S., Amossé J., Lowe C.N. et al. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design. Environ Sci Pollut Res. 2018;25(34):33867–33881.
- Golovanova E.V., Unru D.P., Babiy K.A. et al. Can Earthworm Invasions from Rudny Altai (Kazakhstan) in the South of Western Siberia Change the Amount of Humus in Meadow Chernozem (Calcic Chernozem) Soils? Biogenic – Abiogenic Interactions in Natural and Anthropogenic Systems 2022. Cham: Springer International Publishing, 2023:395–409.
- Avetov N.A., Aleksandrovskiy A.L., Alyabina I.O. et al. Natsional′nyy atlas pochv Rossiyskoy Federatsii = National Soil Atlas of the Russian Federation. Moscow: Astrel′, 2011:632. (In Russ.)
- GOST 26423-85. Pochvy. Metody opredeleniya udel′noy elektricheskoy provodimosti, rN i plotnogo ostatka vodnoy vytyazhki = Soils. Methods for determining specific electrical conductivity, pH, and solid residue of aqueous extracts. (In Russ.). Available at: https://gostassistent.ru/doc/69595fb0-0f28-49b4-aeae-23efbc396a50
- GOST 26213-91. Pochvy. Metody opredeleniya organicheskogo veshchestva = Soils. Methods for determining organic matter. (In Russ.). Available at: https://gostassistent.ru/doc/2ac430cc-ab72-48d4-bdbc-8204a03b4ef0
- Edwards C.A., Arancon N.Q. Biology and Ecology of Earthworms. New York: Springer US, 2022.
- Potvin L.R., Lilleskov E.A. Introduced earthworm species exhibited unique patterns of seasonal activity and vertical distribution, and Lumbricus terrestris burrows remained usable for at least 7 years in hardwood and pine stands. Biology and Fertility of Soils. 2017;53(2):187–198.
- Pitkänen J., Nuutinen V. Distribution and abundance of burrows formed by Lumbricus terrestris L. and Aporrectodea caliginosa Sav. in the soil profile. Soil Biology and Biochemistry. 1997;(3–4):463–467.
- Garamszegi P., Calogiuri T., Hagens M. et al. A density-based method to objectively quantify earthworm activity. Applied Soil Ecology. 2025;206:105771.
- Eriksen-Hamel N.S., Whalen J.K. Growth rates of Aporrectodea caliginosa (Oligochaetae: Lumbricidae) as influenced by soil temperature and moisture in disturbed and undisturbed soil columns. Pedobiologia. 2006;50(3): 207–215.
- McDaniel J.P., Stromberger M.E., Barbarick K.A., Cranshaw W. Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. Applied Soil Ecology. 2013;71:1–6.
- Fraser P.M., Beare M.H., Butler R.C. et al. Interactions between earthworms (Aporrectodea caliginosa), plants and crop residues for restoring properties of a degraded arable soil. Pedobiologia. 2003;47(5–6):870–876.
- Frazão J., De Goede R.G.M., Capowiez Y., Pulleman M.M. Soil structure formation and organic matter distribution as affected by earthworm species interactions and crop residue placement. Geoderma. 2019;338:453–463.
- Räty M. Growth of Lumbricus terrestris and Aporrectodea caliginosa in an acid forest soil, and their effects on enchytraeid populations and soil properties. Pedobiologia. 2004;48(4):321–328.
- Costello D.M., Lamberti G.A. Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems. Oecologia. 2008;158(3):499–510.
- Uvarov A.V. Density-dependent responses in some common lumbricid species. Pedobiologia. 2017;61:1–8.
- Uvarov A.V. The Overwinter Survival of three Earthworm Species in Mono- and Multispecific Assemblages. Biology Bulletin. 2021;48(6):821–828.
- Garbuz S., Camps-Arbestain M., Mackay A. et al. The interactions between biochar and earthworms, and their influence on soil properties and clover growth: A 6-month mesocosm experiment. Applied Soil Ecology. 2019:103402.
- Qiu Y., Tang R., Liu Y. et al. Field experiment reveals varied earthworm densities boost soil organic carbon more than they increase carbon dioxide emissions. Geoderma. 2025;456:117251.
- Chan K.Y., Baker G.H., Conyers M.K. et al. Complementary ability of three European earthworms (Lumbricidae) to bury lime and increase pasture production in acidic soils of south-eastern Australia. Applied Soil Ecology. 2004;26(3):257–271.
- Šimek M., Pižl V. Soil CO₂ flux affected by Aporrectodea caliginosa earthworms. Open Life Sciences. 2010;5(3):364–370.
Қосымша файлдар


