Пищевые гидроколлоиды: классификация, функциональные свойства и применение
- Авторы: Неповинных Н.В.1, Петрова О.Н.1
-
Учреждения:
- Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова
- Выпуск: Том 8, № 1 (2025)
- Страницы: 66-72
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2618-9771/article/view/310377
- DOI: https://doi.org/10.21323/2618-9771-2025-8-1-66-72
- ID: 310377
Цитировать
Полный текст
Аннотация
Пищевые гидроколлоиды — одни из наиболее востребованных ингредиентов в индустрии питания. Они выступают в роли загустителей, желирующих агентов, эмульгаторов, стабилизаторов, заменителей жиров, осветлителей, флокулянтов и пенообразователей. Кроме того, эти соединения широко применяются в аддитивных технологиях, при производстве биоразлагаемой упаковки и для инкапсуляции биологически активных, красящих веществ и ароматизаторов. В зависимости от источника получения пищевые гидроколлоиды подразделяются на четыре основные категории: гидроколлоиды растительного происхождения, гидроколлоиды животного происхождения, гидроколлоиды микробного происхождения и химически модифицированные гидроколлоиды растительного происхождения (синтетические камеди). В этом обзоре основное внимание уделяется современным тенденциям и технологическим достижениям в использовании гидроколлоидов для обеспечения необходимых потребительских свойств различных пищевых продуктов. Новые исследования показывают, что некоторые пищевые гидроколлоиды могут существенно изменить состав и структуру микробиоты кишечника и положительно повлиять на здоровье человека благодаря своим физико-химическим и структурным свойствам. Поскольку гидроколлоиды находят все более широкое применение в различных отраслях, данный обзор, посвященный их функциональности и питательной ценности в пищевых продуктах, может быть интересен исследователям при разработке инновационных технологических решений. Учитывая значительные достижения и стремительное развитие исследований в последние годы, можно прогнозировать, что изучение пищевых гидроколлоидов будет активно продолжаться. Основными направлениями станут: управление их взаимодействием с компонентами пищи, создание функциональных пищевых матриц, исследование влияния на клеточные процессы и организм в целом, а также оценка метаболизма in vivo и безопасности.
Ключевые слова
Об авторах
Н. В. Неповинных
Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова
Автор, ответственный за переписку.
Email: nnepovinnykh@yandex.ru
410012, Саратов, проспект Петра Столыпина, здание 4, строение 3
О. Н. Петрова
Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова
Email: nnepovinnykh@yandex.ru
410012 г. Саратов, проспект Петра Столыпина, здание 4, строение 3
Список литературы
- Мехедькин, А. А. (2021). Развитие рынка желатина и гидроколлоидов. Управление рисками в АПК, 4(38), 57–63.
- Seisun, D., Zalesny, N. (2021). Strides in food texture and hydrocolloids. Food Hydrocolloids, 117, Article 106575. https://doi.org/10.1016/j.foodhyd.2020.106575
- Bojorges, H., López-Rubio, A., Martínez-Abad, A., José Fabra, M. (2025). Functional and bioactive properties of the protein-polysaccharide extracts from brown algae: Exploring novel functional ingredients. Food Hydrocolloids, 162, Article 110967. https://doi.org/10.1016/j.foodhyd.2024.110967
- Phillips, G. O., Williams, P. A. (2009). Handbook of Hydrocolloids. Cambridge, UK: Woodhead Publishing Limited, 2009.
- Птичкин, И. И., Птичкина, Н. М. (2012). Пищевые полисахариды: структурные уровни и функциональность. Саратов: Типография № 6, 2012.
- Донченко, Л. В., Сокол, Н. В., Красноселова, Е. А. (2019). Пищевая химия. Гидроколлоиды. Москва: Юрайт, 2019.
- Li, J.-M., Nie, S.-P. (2013). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46–61. https://doi.org/10.1016/j.foodhyd.2015.01.035
- Пак, А. М., Нелюбина, Ю. В., Новиков, В. В. (2023). Природные гидроколлоиды как биосовместимые композитные материалы для пищевой промышленности. Успехи химии, 92(11), Статья RCR5102.
- Brownlee, I. A. (2011). The physiological roles of dietary fibre. Food Hydrocolloids, 25(2), 238–250. https://doi.org/10.1016/j.foodhyd.2009.11.013
- Chawla, R., Patil, G. R. (2010). Soluble dietary fiber. Comprehensive Reviews in Food Science and Food Safety, 9(2), 178–196. https://doi.org/10.1111/j.1541-4337.2009.00099.x
- Неповинных, Н. В., Нишинари, К., Еганехзад С., Куценкова, В. С., Петрова, О. Н. (2023). Применение пищевых гелей в индустрии питания. Известия высших учебных заведений. Пищевая технология, 5–6(394), 118–124.
- Garcıa-Ochoa, F., Santos, V. E., Casas, J. A., Gómez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1
- Cui, J., Zhao, C., Feng, L., Han, Y., Du, H., Xiao, H. et. al. (2021). Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends in Food Science and Technology, 110, 39–54. https://doi.org/10.1016/j.tifs.2021.01.077
- Klinchongkon, K., Khuwijitjaru, P., Adachi, S. (2017). Degradation kinetics of passion fruit pectin in subcritical water. Bioscience, Biotechnology and Biochemistry, 81(4), 712–717. https://doi.org/10.1080/09168451.2016.1277941
- Muñoz-Almagro, N., Valadez-Carmona, L., Mendiola, J. A., Ibáñez, E., Villamiel, M. (2019). Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydrate Polymers, 217, 69–78. https://doi.org/10.1016/j.carbpol.2019.04.040
- Colodel, C., Petkowicz, C. L. de O. (2019). Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocolloids, 86, 193–200. https://doi.org/10.1016/j.foodhyd.2018.06.013
- Gutöhrlein, F., Drusch, S., Schalow, S. (2020). Extraction of low methoxylated pectin from pea hulls via RSM. Food Hydrocolloids, 102, Article 105609. https://doi.org/10.1016/j.foodhyd.2019.105609
- Sabater, C., Sabater, V., Olano, A., Montilla, A., Corzo, N. (2020). Ultrasoundassisted extraction pectin from artichoke by-products. An artificial neural network approach to pectin. Food Hydrocolloids, 98, Article 105238. https://doi.org/10.1016/j.foodhyd.2019.105238
- Ma, X., Jing, J., Wang, J., Xu, J., Hu, Z. (2020). Extraction of low methoxyl pectin from fresh sunflower heads by subcritical water extraction. ACS Omega, 5(25), 15095–15104. https://doi.org/10.1021/acsomega.0c00928
- Мещерякова, Г. С., Нугманов, А. Х. Х., Алексанян, И. Ю., Максименко, Ю. А., Соколова, Е. В. (2021). Диспергирование арбузных корок, как вторичного сырья, в технологиях пектиносодержащих экстрактов и пленочных структур. Новые технологии / New technologies, 17(5), 31–42.
- Ионин, В. А., Маляр, Ю. Н., Зимонин, Д. В., Боровкова, В. С., Захарченко, А. В., Литовка, Ю. А. и др. (2022). Оптимизация выделения пектинов из коры пихты сибирской (Abies sibírica), поврежденной полиграфом уссурийским (Polygraphus proximus). Химия растительного сырья, 4, 67–76.
- Хайтметова, С. Б., Тураев, А. С., Мухитдинов, Б. И., Халилова, Г. А. (2021). Выделение и физико-химические характеристики пектина из нетрадиционного природного сырья. Химия растительного сырья, 4, 75–82.
- Dranca, F., Oroian, M. (2018). Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Research International, 113, 327–350. https://doi.org/10.1016/j.foodres.2018.06.065
- Colodel, C., Vriesmann, L. C., Teófilo, R. F., Petkowicz, C. L. de O. (2018). Extraction of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization. International Journal of Biological Macromolecules, 117, 385–391. https://doi.org/10.1016/j.ijbiomac.2018.05.048
- Sikqria, R. (2023). Tea and coffee waste to be composted in the Netherlands as gov adopts Green Deal. Retrieved from https://www.packaginginsights.com/news/tea-and-coffee-waste-to-be-composted-in-the-netherlands-as-govadopts-green-deal.html Accessed September 20, 2024
- Nishinari, K., Peyron, M.-A., Yang, N., Gao, Z., Zhang, K., Fang, Y. et. al. (2024). The role of texture in the palatability and food oral processing. Food Hydrocolloids, 147(Part A), Article 109095. https://doi.org/10.1016/j.foodhyd.2023.109095
- Saha, D., Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 6(47), 587–597. https://doi.org/10.1007/s13197-010-0162-6
- Mardani, M., Yeganehzad, S., Ptichkina, N., Kodatsky, Yu., Kliukina, O., Nepovinnykh, N. et. al. (2019). Study on foaming, rheological and thermal properties of gelatin-free marshmallow. Food Hydrocolloids, 93, 335–341. https://doi.org/10.1016/j.foodhyd.2019.02.033
- Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482. https://doi.org/10.1016/j.foodhyd.2008.08.005
- Dickinson, E. (2018). Hydrocolloids acting as emulsifying agents — How do they do it? Food Hydrocolloids, 78, 2–14. https://doi.org/10.1016/j.foodhyd.2017.01.025
- Cen, S., Li, S., Meng, Z. (2024) Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Research International, 191, Article 114703. https://doi.org/10.1016/j.foodres.2024.114703
- Sinha, S. S., Upadhyay, A., Singh, A., Mishra, S., Pandey, N. (2024). Bigels a versatile gel composite for tailored application in food industries: A review. Food Structure, 41, Article 100380. https://doi.org/10.1016/j.foostr.2024
- Patel, A. R., Nicholson, R. A., Marangoni, A. G. (2020). Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products. Current Opinion in Food Science, 33, 61–68. https://doi.org/10.1016/j.cofs.2019.12.008
- Weng, Y., Sun, B., Jin, W., Yan, P., Chen, X., Song, H. et. al. (2024). Mechanistic study on phytase stabilization using alginate encapsulation. Food Hydrocolloids, 151, Article 109837. https://doi.org/10.1016/j.foodhyd.2024.109837
- Bu, W., McClements, D. J., Zhang, Z., Zhang, R., Jin, Z., Chen, L. (2025). Encapsulation method of probiotic embedded delivery system and its application in food. Food Hydrocolloids, 159, Article 110625. https://doi.org/10.1016/j.foodhyd.2024.110625
- Reque, P. M., Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science and Technology, 114, 1–10. https://doi.org/10.1016/j.tifs.2021.05.022
- Shlush, E., Davidovich-Pinhas, M. (2022). Bioplastics for food packaging. Trends in Food Science and Technology, 125, 66–80. https://doi.org/10.1016/j.tifs.2022.04.026
- Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
- Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., Singh, S. P. (2007). Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience, 7(3), 255–277. https://doi.org/10.1002/mabi.200600168
- Guo, N., Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
- Mantihal, S., Prakash, S., Godoi, F. C., Bhandari, B. (2019). Effect of additives on thermal, rheological and tribological properties of 3D printed dark chocolate. Food Research International, 119, 161–169. https://doi.org/10.1016/j.foodres.2019.01.056
- Pulatsu, E., Su, J.-W., Lin, J., Lin, M. (2020). Factors affecting 3D printing and post-processing capacity of cookie dough. Innovative Food Science and Emerging Technologies, 61, Article 102316. https://doi.org/10.1016/j.ifset.2020.102316
- Kim, H. W., Lee, J. H., Park, S. M., Lee, M. H., Lee, I. W., Doh, H. S. et. al. (2018). Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing. Journal of Food Science, 12(83), 2923–2932. https://doi.org/10.1111/1750-3841.14391
- Le Tohic, C., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P. et al. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56–64. https://doi.org/10.1016/j.jfoodeng.2017.02.003
- Bhuiyan, Md. H. R., Yeasmen, N., Ngadi, M. (2024). Impact of hydrocolloids on 3D meat analog printing and cooking. Food Structure, 42, Article 100396. https://doi.org/10.1016/j.foostr.2024.100396
- Dick, A., Bhandari, B., Dong, X., Prakash, S. (2020). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids, 107, Article 105940. https://doi.org/10.1016/j.foodhyd.2020.105940
- Pematilleke, N., Kaur, M., Wai, C. T. R., Adhikari, B., Torley, P. J. (2021). Effect of the addition of hydrocolloids on beef texture: Targeted to the needs of people with dysphagia. Food Hydrocolloids, 113, Article 106413. https://doi.org/10.1016/j.foodhyd.2020.106413
- Jensen, M. G., Knudsen, J. C., Viereck, N., Kristensen, M., Astrup, A. (2012). Functionality of alginate based supplements for application in human appetite regulation. Food Chemistry, 132(2), 823–829. https://doi.org/10.1016/j.foodchem.2011.11.042
- Tárregaa, A., Martínezb, M., Vélez- Ruizb, J. F., Fiszman, S. (2014). Hydrocolloids as a tool for modulating the expected satiety of milk-based snacks. Food Hydrocolloids, 39, 51–57. https://doi.org/10.1016/j.foodhyd.2013.12.025
- Liu, J., Lu, J.-F., Kan, J., Wen, X.-Y., Jin, C.-H. (2014). Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. International Journal of Biological Macromolecules, 64, 76–83. https://doi.org/10.1016/j.ijbiomac.2013.11.028
- Bae, M.-J., Shin, H. S., Kim, E.-K., Kim, J., Shon D.-H. (2013). Oral administration of chitin and chitosan prevents peanut-induced anaphylaxis in a murine food allergy model. International Journal of Biological Macromolecules, 61, 164–168. https://doi.org/10.1016/j.ijbiomac.2013.06.017
- Belobrajdic, D. P., Jenkins, C. L. D., Bushell, R., Morell, M. K., Bird, A. R. (2012). Fructan extracts from wheat stem and barley grain stimulate large bowel fermentation in rats. Nutrition Research, 8(32), 599–606. https://doi.org/10.1016/j.nutres.2012.06.009
- Wu, W.-T., Yang, L.-C., Chen, H.-L. (2014). Effects of konjac glucomannan, inulin and cellulose on acute colonic responses to genotoxic azoxymethane. Food Chemistry, 155, 304–310. https://doi.org/10.1016/j.foodchem.2014.01.065
- Dong, J. L., Cai, F. L., Shen, R. L., Liu, Y. Q. (2011). Hypoglycaemic effects and inhibitory effect on intestinal disaccharidases of oat beta-glucan in streptozotocin-induced diabetic mice. Food Chemistry, 129(3), 1066–1071. https://doi.org/10.1016/j.foodchem.2011.05.076
- Pentikäinen, S., Karhunen, L., Flander, L., Katina, K., Meynier, A., Aymard, P. et al. (2014). Enrichment of biscuits and juice with oat β-glucan enhances postprandial satiety. Appetite, 75, 150–156. https://doi.org/10.1016/j.appet.2014.01.002
- Feinglos, M. N., Gibb, R. D., Ramsey, D. L., Surwit, R. S., McRorie, J. W. (2013). Psyllium improves glycemic control in patients with type‑2 diabetes mellitus. Bioactive Carbohydrates and Dietary Fibre, 1(2), 156–161. https://doi.org/10.1016/j.bcdf.2013.02.003
- Moreaux, S. J. J., Nichols, J. L., Bowman, J. G. P., Hatfield, P. G. (2011). Psyllium lowers blood glucose and insulin concentrations in horses. Journal of Equine Veterinary Science, 31(4), 160–165. https://doi.org/10.1016/j.jevs.2011.02.002
- Chen, H., Wang, Z., Tian, J., Wang, J. (2013). Structural characterization and antioxidant properties of polysaccharides from two Schisandra fruits. European Food Research and Technology, 237(5), 691–701. https://doi.org/10.1007/s00217-013-2044-4
- Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M., Coimbra, M. A. (2015). Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate Polymers, 132, 378–396. https://doi.org/10.1016/j.carbpol.2015.05.079
Дополнительные файлы
