Food hydrocolloids: Classification, functional properties and applications
- 作者: Nepovinnykh N.V.1, Petrova O.N.1
-
隶属关系:
- Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov
- 期: 卷 8, 编号 1 (2025)
- 页面: 66-72
- 栏目: Articles
- URL: https://journal-vniispk.ru/2618-9771/article/view/310377
- DOI: https://doi.org/10.21323/2618-9771-2025-8-1-66-72
- ID: 310377
如何引用文章
全文:
详细
Food hydrocolloids are among the most popular ingredients in the food industry. They act as thickeners, gelling agents, emulsifiers, stabilizers, fat replacers, clarifying agents, flocculants, and foaming agents. In addition, these compounds are widely used in additive technologies, for production of biodegradable packaging and for encapsulation of biologically active substances, colorants and flavors. Depending on the source, food hydrocolloids are divided into four main categories: hydrocolloids of plant origin, hydrocolloids of animal origin, hydrocolloids of microbial origin, and chemically modified hydrocolloids of plant origin (synthetic gums). This review focuses on current trends and technological advances in the use of hydrocolloids to provide the required consumer properties of various food products. New research shows that some food hydrocolloids can significantly change the composition and structure of the intestinal microbiota and positively affect human health due to their physicochemical and structural properties. As hydrocolloids are increasingly used in various industries, this review on their functionality and nutritional value in food products may be of interest to researchers in developing innovative technological solutions. Given the significant achievements and rapid development of research in recent years, it can be predicted that the study of food hydrocolloids will be actively continued. The main areas will be: managing their interaction with food components, creating functional food matrices, studying the effect on cellular processes and the body as a whole, as well as assessing in vivo metabolism and safety.
作者简介
N. Nepovinnykh
Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov
编辑信件的主要联系方式.
Email: nnepovinnykh@yandex.ru
House 4, building 3, Peter Stolypin Ave, 410012, Saratov
O. Petrova
Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov
Email: nnepovinnykh@yandex.ru
House 4, building 3, Peter Stolypin Ave, 410012, Saratov
参考
- Mekhedkin, A. A. (2021). Development of the market of gelatin and hydrocolloids Agricultural Risk Management, 4(38), 57–63. (In Russian)] https://doi.org/10.53988/24136573-2020-04-05
- Seisun, D., Zalesny, N. (2021). Strides in food texture and hydrocolloids. Food Hydrocolloids, 117, Article 106575. https://doi.org/10.1016/j.foodhyd.2020.106575
- Bojorges, H., López-Rubio, A., Martínez-Abad, A., José Fabra, M. (2025). Functional and bioactive properties of the protein-polysaccharide extracts from brown algae: Exploring novel functional ingredients. Food Hydrocolloids, 162, Article 110967. https://doi.org/10.1016/j.foodhyd.2024.110967
- Phillips, G. O., Williams, P. A. (2009). Handbook of Hydrocolloids. Cambridge, UK: Woodhead Publishing Limited, 2009.
- Ptichkin, I. I., Ptichkina N.M. (2012). Food polysaccharides: Structural levels and functionality. Saratov: Printing house № 6, 2012. (In Russian)]
- Donchenko, L. V., Sokol, N. V., Krasnoselova, E. A. (2019). Food chemistry. Hydrocolloids. Moscow: Yurayt, 2019. (In Russian)]
- Li, J.-M., Nie, S.-P. (2013). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46–61. https://doi.org/10.1016/j.foodhyd.2015.01.035
- Pak, A. M., Nelyubina Yu. V., Novikov V.V. (2023). Natural hydrocolloids as biocompatible composite materials for food applications. Russian Chemical Reviews, 92(11), Article RCR5102. (In Russian)] https://doi.org/10.59761/RCR5102
- Brownlee, I. A. (2011). The physiological roles of dietary fibre. Food Hydrocolloids, 25(2), 238–250. https://doi.org/10.1016/j.foodhyd.2009.11.013
- Chawla, R., Patil, G. R. (2010). Soluble dietary fiber. Comprehensive Reviews in Food Science and Food Safety, 9(2), 178–196. https://doi.org/10.1111/j.1541-4337.2009.00099.x
- Nepovinnykh, N. V., Nishinari, K., Yeganehzad, S., Kutsenkova, V. S., Petrova, O. N. (2023). Application of food gels in the food industry. Izvestiya Vuzov. Food Technology, 5–6(394), 118–124. (In Russian)] https://doi.org/10.26297/0579-3009.2023.5-6.19
- Garcıa-Ochoa, F., Santos, V. E., Casas, J. A., Gómez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1
- Cui, J., Zhao, C., Feng, L., Han, Y., Du, H., Xiao, H. et. al. (2021). Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends in Food Science and Technology, 110, 39–54. https://doi.org/10.1016/j.tifs.2021.01.077
- Klinchongkon, K., Khuwijitjaru, P., Adachi, S. (2017). Degradation kinetics of passion fruit pectin in subcritical water. Bioscience, Biotechnology and Biochemistry, 81(4), 712–717. https://doi.org/10.1080/09168451.2016.1277941
- Muñoz-Almagro, N., Valadez-Carmona, L., Mendiola, J. A., Ibáñez, E., Villamiel, M. (2019). Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydrate Polymers, 217, 69–78. https://doi.org/10.1016/j.carbpol.2019.04.040
- Colodel, C., Petkowicz, C. L. de O. (2019). Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocolloids, 86, 193–200. https://doi.org/10.1016/j.foodhyd.2018.06.013
- Gutöhrlein, F., Drusch, S., Schalow, S. (2020). Extraction of low methoxylated pectin from pea hulls via RSM. Food Hydrocolloids, 102, Article 105609. https://doi.org/10.1016/j.foodhyd.2019.105609
- Sabater, C., Sabater, V., Olano, A., Montilla, A., Corzo, N. (2020). Ultrasoundassisted extraction pectin from artichoke by-products. An artificial neural network approach to pectin. Food Hydrocolloids, 98, Article 105238. https://doi.org/10.1016/j.foodhyd.2019.105238
- Ma, X., Jing, J., Wang, J., Xu, J., Hu, Z. (2020). Extraction of low methoxyl pectin from fresh sunflower heads by subcritical water extraction. ACS Omega, 5(25), 15095–15104. https://doi.org/10.1021/acsomega.0c00928
- Meshcheryakova, G. S., Nugmanov, A. H. H., Aleksanian, I. Yu., Maksimenko, Yu. A., Sokolova, E. V. (2021). Dispersion of watermelon rinds as secondary raw materials in technologies of pectin-containing extracts and film structures. New Technologies, 17(5), 31–42. (In Russian)] https://doi.org/10.47370/2072-0920-2021-17-5-31-42
- Ionin, V. A., Malyar, Yu. N., Zimonin, D. V., Borovkova, V. S., Zaharchenko, A. V., Litovka, Yu. A. et. al. (2022). Optimization of pectin extraction from the bark of siberian fir (Abies sibírica), corrupted by Ussuri polygraph (Polygraphus proximus). Chemistry of Plant Raw Material, 4, 67–76. (In Russian)] https://doi.org/10.14258/jcprm.20220412027
- Khaytmetova, S. B., Turaev, A. S., Muhitdinov, B. I., Khalilova, G. A. (2021). Isolation and physicochemical characterization of pectin from nonconventional natural raw materials. Chemistry of Plant Raw Material, 4, 75–82. (In Russian)] https://doi.org/10.14258/jcprm.2021048412
- Dranca, F., Oroian, M. (2018). Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Research International, 113, 327–350. https://doi.org/10.1016/j.foodres.2018.06.065
- Colodel, C., Vriesmann, L. C., Teófilo, R. F., Petkowicz, C. L. de O. (2018). Extraction of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization. International Journal of Biological Macromolecules, 117, 385–391. https://doi.org/10.1016/j.ijbiomac.2018.05.048
- Sikqria, R. (2023). Tea and coffee waste to be composted in the Netherlands as gov adopts Green Deal. Retrieved from https://www.packaginginsights.com/news/tea-and-coffee-waste-to-be-composted-in-the-netherlands-as-govadopts-green-deal.html Accessed September 20, 2024
- Nishinari, K., Peyron, M.-A., Yang, N., Gao, Z., Zhang, K., Fang, Y. et. al. (2024). The role of texture in the palatability and food oral processing. Food Hydrocolloids, 147(Part A), Article 109095. https://doi.org/10.1016/j.foodhyd.2023.109095
- Saha, D., Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 6(47), 587–597. https://doi.org/10.1007/s13197-010-0162-6
- Mardani, M., Yeganehzad, S., Ptichkina, N., Kodatsky, Yu., Kliukina, O., Nepovinnykh, N. et. al. (2019). Study on foaming, rheological and thermal properties of gelatin-free marshmallow. Food Hydrocolloids, 93, 335–341. https://doi.org/10.1016/j.foodhyd.2019.02.033
- Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482. https://doi.org/10.1016/j.foodhyd.2008.08.005
- Dickinson, E. (2018). Hydrocolloids acting as emulsifying agents — How do they do it? Food Hydrocolloids, 78, 2–14. https://doi.org/10.1016/j.foodhyd.2017.01.025
- Cen, S., Li, S., Meng, Z. (2024) Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Research International, 191, Article 114703. https://doi.org/10.1016/j.foodres.2024.114703
- Sinha, S. S., Upadhyay, A., Singh, A., Mishra, S., Pandey, N. (2024). Bigels a versatile gel composite for tailored application in food industries: A review. Food Structure, 41, Article 100380. https://doi.org/10.1016/j.foostr.2024
- Patel, A. R., Nicholson, R. A., Marangoni, A. G. (2020). Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products. Current Opinion in Food Science, 33, 61–68. https://doi.org/10.1016/j.cofs.2019.12.008
- Weng, Y., Sun, B., Jin, W., Yan, P., Chen, X., Song, H. et. al. (2024). Mechanistic study on phytase stabilization using alginate encapsulation. Food Hydrocolloids, 151, Article 109837. https://doi.org/10.1016/j.foodhyd.2024.109837
- Bu, W., McClements, D. J., Zhang, Z., Zhang, R., Jin, Z., Chen, L. (2025). Encapsulation method of probiotic embedded delivery system and its application in food. Food Hydrocolloids, 159, Article 110625. https://doi.org/10.1016/j.foodhyd.2024.110625
- Reque, P. M., Brandelli, A. (2021). Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends in Food Science and Technology, 114, 1–10. https://doi.org/10.1016/j.tifs.2021.05.022
- Shlush, E., Davidovich-Pinhas, M. (2022). Bioplastics for food packaging. Trends in Food Science and Technology, 125, 66–80. https://doi.org/10.1016/j.tifs.2022.04.026
- Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
- Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., Singh, S. P. (2007). Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience, 7(3), 255–277. https://doi.org/10.1002/mabi.200600168
- Guo, N., Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
- Mantihal, S., Prakash, S., Godoi, F. C., Bhandari, B. (2019). Effect of additives on thermal, rheological and tribological properties of 3D printed dark chocolate. Food Research International, 119, 161–169. https://doi.org/10.1016/j.foodres.2019.01.056
- Pulatsu, E., Su, J.-W., Lin, J., Lin, M. (2020). Factors affecting 3D printing and post-processing capacity of cookie dough. Innovative Food Science and Emerging Technologies, 61, Article 102316. https://doi.org/10.1016/j.ifset.2020.102316
- Kim, H. W., Lee, J. H., Park, S. M., Lee, M. H., Lee, I. W., Doh, H. S. et. al. (2018). Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing. Journal of Food Science, 12(83), 2923–2932. https://doi.org/10.1111/1750-3841.14391
- Le Tohic, C., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P. et al. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56–64. https://doi.org/10.1016/j.jfoodeng.2017.02.003
- Bhuiyan, Md. H. R., Yeasmen, N., Ngadi, M. (2024). Impact of hydrocolloids on 3D meat analog printing and cooking. Food Structure, 42, Article 100396. https://doi.org/10.1016/j.foostr.2024.100396
- Dick, A., Bhandari, B., Dong, X., Prakash, S. (2020). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids, 107, Article 105940. https://doi.org/10.1016/j.foodhyd.2020.105940
- Pematilleke, N., Kaur, M., Wai, C. T. R., Adhikari, B., Torley, P. J. (2021). Effect of the addition of hydrocolloids on beef texture: Targeted to the needs of people with dysphagia. Food Hydrocolloids, 113, Article 106413. https://doi.org/10.1016/j.foodhyd.2020.106413
- Jensen, M. G., Knudsen, J. C., Viereck, N., Kristensen, M., Astrup, A. (2012). Functionality of alginate based supplements for application in human appetite regulation. Food Chemistry, 132(2), 823–829. https://doi.org/10.1016/j.foodchem.2011.11.042
- Tárregaa, A., Martínezb, M., Vélez- Ruizb, J. F., Fiszman, S. (2014). Hydrocolloids as a tool for modulating the expected satiety of milk-based snacks. Food Hydrocolloids, 39, 51–57. https://doi.org/10.1016/j.foodhyd.2013.12.025
- Liu, J., Lu, J.-F., Kan, J., Wen, X.-Y., Jin, C.-H. (2014). Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin. International Journal of Biological Macromolecules, 64, 76–83. https://doi.org/10.1016/j.ijbiomac.2013.11.028
- Bae, M.-J., Shin, H. S., Kim, E.-K., Kim, J., Shon D.-H. (2013). Oral administration of chitin and chitosan prevents peanut-induced anaphylaxis in a murine food allergy model. International Journal of Biological Macromolecules, 61, 164–168. https://doi.org/10.1016/j.ijbiomac.2013.06.017
- Belobrajdic, D. P., Jenkins, C. L. D., Bushell, R., Morell, M. K., Bird, A. R. (2012). Fructan extracts from wheat stem and barley grain stimulate large bowel fermentation in rats. Nutrition Research, 8(32), 599–606. https://doi.org/10.1016/j.nutres.2012.06.009
- Wu, W.-T., Yang, L.-C., Chen, H.-L. (2014). Effects of konjac glucomannan, inulin and cellulose on acute colonic responses to genotoxic azoxymethane. Food Chemistry, 155, 304–310. https://doi.org/10.1016/j.foodchem.2014.01.065
- Dong, J. L., Cai, F. L., Shen, R. L., Liu, Y. Q. (2011). Hypoglycaemic effects and inhibitory effect on intestinal disaccharidases of oat beta-glucan in streptozotocin-induced diabetic mice. Food Chemistry, 129(3), 1066–1071. https://doi.org/10.1016/j.foodchem.2011.05.076
- Pentikäinen, S., Karhunen, L., Flander, L., Katina, K., Meynier, A., Aymard, P. et al. (2014). Enrichment of biscuits and juice with oat β-glucan enhances postprandial satiety. Appetite, 75, 150–156. https://doi.org/10.1016/j.appet.2014.01.002
- Feinglos, M. N., Gibb, R. D., Ramsey, D. L., Surwit, R. S., McRorie, J. W. (2013). Psyllium improves glycemic control in patients with type‑2 diabetes mellitus. Bioactive Carbohydrates and Dietary Fibre, 1(2), 156–161. https://doi.org/10.1016/j.bcdf.2013.02.003
- Moreaux, S. J. J., Nichols, J. L., Bowman, J. G. P., Hatfield, P. G. (2011). Psyllium lowers blood glucose and insulin concentrations in horses. Journal of Equine Veterinary Science, 31(4), 160–165. https://doi.org/10.1016/j.jevs.2011.02.002
- Chen, H., Wang, Z., Tian, J., Wang, J. (2013). Structural characterization and antioxidant properties of polysaccharides from two Schisandra fruits. European Food Research and Technology, 237(5), 691–701. https://doi.org/10.1007/s00217-013-2044-4
- Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M., Coimbra, M. A. (2015). Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate Polymers, 132, 378–396. https://doi.org/10.1016/j.carbpol.2015.05.079
补充文件
