Data Analysis and Visualization in the Tasks of the Project Solutions Multicriteria Optimization
- Autores: Pimenov V.I1, Pimenov I.V2
-
Afiliações:
- Saint-Petersburg State University of Industrial Technologies and Design
- Admiral Makarov State University of Maritime and Inland Shipping
- Edição: Volume 21, Nº 3 (2022)
- Páginas: 543-571
- Seção: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/266352
- DOI: https://doi.org/10.15622/ia.21.3.4
- ID: 266352
Citar
Texto integral
Resumo
Sobre autores
V. Pimenov
Saint-Petersburg State University of Industrial Technologies and Design
Email: v_pim@mail.ru
Voznesensky Av. 46
I. Pimenov
Admiral Makarov State University of Maritime and Inland Shipping
Email: i-pim@mail.ru
Dvinskaya St. 5/7
Bibliografia
- Perrier N., Benbrahim S.-E., Pellerin R. The core processes of project control: A network analysis // Procedia Computer Science. 2018. vol. 138. pp. 697–704.
- Laursen Markus, Svejvig Per, Gerstrøm Rode Anna Le. Four Approaches to Project Evaluation // The 24th Nordic Academy of Management Conference (NFF-2017). 2017. pp. 1–25.
- Makeev Vladimir, Isaev Albert, Kulikov Sergey, Stratan Dmitry, Shevkunov Nikolay. Modeling and assessing the effectiveness of investment projects in the agricultural sector // XII International Scientific Conference on Agricultural Machinery Industry. 2019. 10–13 September. vol. 403: 012077.
- Budeli Lalamani, Wichers J.H. Evaluating aspects of power plant performance using Project Success Life Cycle Model (PSLCM) // PM World Journal. 2018, vol. VII. iss. XI. pp. 1–25.
- Юсупов Р.М., Мусаев А.А. Особенности оценивания эффективности информационных систем и технологий // Труды СПИИРАН. 2017. Вып. 2(51), С. 5–34.
- Chereshkin D., Royzenson G., Britkov V. Multidimensional classifier of risk analysis methods // 11th World Conference «Intelligent Systems for Industrial Automation» (WCIS-2020). 2020. vol. 1323. pp. 529–536.
- Koledina K.F., Koledin S.N., Karpenko A.P., Gubaydullin I.M., Vovdenko M.K. Multi-objective optimization of chemical reaction conditions based on a kinetic model // Journal of Mathematical Chemistry. 2019. vol. 57, p.p. 484–493.
- Serafini Marco, Furini Francesco, Colombo Giorgio, Rizzi Caterina. Optimized development: defining design rules through product optimization techniques // Computer-Aided Design & Applications. 2016. vol. 13. no. 5. pp. 600–609.
- Zhao Menglong, Huang Shengzhi, Huang Qiang, Wang Hao, Leng Guoyong, Liu Siyuan, Wang Lu. Copula-Based Research on the Multi-Objective Competition Mechanism in Cascade Reservoirs Optimal Operation // Water. 2019. vol. 11. iss. 995. pp. 1–19.
- Wicaksono Albert, Jeong Gimoon, Kang Doosun. Water–Energy–Food Nexus Simulation: An Optimization Approach for Resource Security // Water. 2019. vol. 11. iss. 4: 667. pp. 1–19.
- Akhanova M.A., Eropkina A.S., Ovchinnikova S.V., Skifskaya A.L. Methodology of estimating an IT project efficiency // International Journal of Mechanical Engineering and Technology (IJMET). 2018. vol. 9. iss. 13. pp. 803–809.
- Орехова Н.Ю. Построение математической модели инвестиционного проекта // Труды СПИИРАН. 2003. Вып. 1. Т. 3, С. 187–195.
- Kharchenko Volodymyr, Kharchenko Hanna. Simulation Modeling in Assessing the Effectiveness and Risk of Investment Projects // Modern Economics. 2020. vol. 22(1). pp. 119–124.
- Glukhikh I.N., Pisarev M.O., Nonieva K.Z. Developing an Automated System for Assessing an Innovative Project's Economic Efficiency for an Oil and Gas Industry Case // International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), IEEE. 2020. October 6–9. access. no. 20256255.
- Мусаев А.А., Нозик А.А., Русинов Л.А. Прогностический анализ безопасности промышленного предприятия // Известия Санкт-Петербургского государственного технологического института (технического университета). 2016. № 34(60). C. 87–93.
- Aliyev Elchin, Rzayev Ramin, Ali Adila. Multi-criteria Evaluation of Investment Projects Using the Fuzzy Method of Weighted Maximin Convolution // 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence (ICSCCW–2021). 2022. pp. 671–679.
- Vanhoucke Mario, Batselier Jordy. A Statistical Method for Estimating Activity Uncertainty Parameters to Improve Project Forecasting // Entropy. 2019. vol. 21. iss. 952. pp. 1–28.
- Chernyakhovskaya Liliya, Nizamutdinov Marsel. Development of Knowledge Base for Intellectual Decision Support in the Process of Innovative Project Management // IEEE XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). 2019. access. no. 19318924.
- Piterska Varvara, Shakhov Anatoliy, Lohinov Oleh, Lohinova Liliia. The Method of Transfer of Research Project Results of Institution of Higher Education // IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT). 2019. access. no. 19250579.
- Ayaz Ahsan, Rasheed Ashhad. Multi-Objective Design Optimization of Multicopter using Genetic Algorithm // IEEE International Bhurban Conference on Applied Sciences and Technologies (IBCAST). 2021. access. no. 20633290.
- Sanjeev Kumar Dash, Ajit Kumar Behera, Satchidananda Dehuri, Sung-Bae Cho. Radial basis function neural networks: a topical state-of-the-art survey // Open Computer Science. 2016. vol. 6. iss. 1. pp. 33–63.
- Пименов В.И., Кофнов О.В., Пименов И.В. Оценка эффективности проектов на основе применения моделей машинного обучения и методов многокритериальной оптимизации // Совершенствование математического образования – 2020: состояние и перспективы развития: Материалы XI междунар. науч.-методич. конф. Тирасполь. 2020. С. 115–119.
- Pimenov V.I., Pimenov I.V. Interpretation of a trained neural network based on genetic algorithms // Информационно-управляющие системы. 2020. № 6. С. 12–20.
- Qin Shufen, Sun Chaoli, Jin Yaochu, Tan Ying, Fieldsend Jonathan. Large-Scale Evolutionary Multiobjective Optimization Assisted by Directed Sampling // IEEE Transactions on Evolutionary Computation. 2021. vol. 25. iss. 4. pp. 724–738.
- Li Yuping, Petrov D.A., Sherlock Gavin. Single nucleotide mapping of trait space reveals Pareto fronts that constrain adaptation // Nature Ecology & Evolution. 2019. vol. 3. pp. 1539–1551.
- Израйлевич С.В., Цудикман В.Я. Опционы: системный подход к инвестициям. Критерии оценки и методы анализа торговых возможностей // М.: Альпина Паблишер. 2008. 280 с.
- Handl Julia, Knowles Joshua. Modes of Problem Solving with Multiple Objectives: Implications for Interpreting the Pareto Set and for Decision Making // Multiobjective Problem Solving from Nature. 2008. pp.131–151.
- Chikumbo Oliver, Granville Vincent. Optimal Clustering and Cluster Identity in Understanding High-Dimensional Data Spaces with Tightly Distributed Points // Machine learning & knowledge extraction. 2019. vol. 1. iss. 2. pp. 715–744.
- Mercioni Marina Adriana, Holban Ştefan. Evaluating hierarchical and non-hierarchical grouping for develop a smart system // IEEE International Symposium on Electronics and Telecommunications (ISETC). 2018. access. no. 18326471.
- Ida Masaaki. Consideration on the variation of financial data of institutions for canonical correlation analysis // IEEE 21st International Conference on Advanced Communication Technology (ICACT). 2019. access. no. 18636837.
- Georgioudakis Manolis, Fragiadakis Michalis. Selection and Scaling of Ground Motions Using Multicriteria Optimization // Journal of Structural Engineering (ASCE). 2020. vol. 146. iss. 11: 04020241.
- Zhu Yun, Wang Jun, Liang Shuang. Multi-Objective Optimization Based Multi-Bernoulli Sensor Selection for Multi-Target Tracking // Sensors. 2019. vol. 19. iss. 4: 980. pp. 1–18.
- Титов В.Г., Залазинский А.Г., Крючков Д.И., Нестеренко А.В. Многокритериальная оптимизация методом «идеальной точки» состава сырья для изготовления композитной заготовки // Известия вузов. Порошковая металлургия и функциональные покрытия. 2019. №2. С. 49–56.
- Xiaoping Fang, Yaoming Cai, Zhihua Cai, Xinwei Jiang, Zhikun Chen. Sparse Feature Learning of Hyperspectral Imagery via Multiobjective-Based Extreme Learning Machine // Sensors. 2020. vol. 20. iss. 5: 1262. pp. 1–19.
- Березкин В.Е., Каменев Г.К., Лотов А.В. Программа для визуализации многомерной границы Парето в невыпуклых задачах многокритериальной оптимизации (PFV-II). Свидетельство о государственной регистрации программы для ЭВМ № RU 2019664809 от 13.11.2019.
- Long Lim Kian, Hui Lim Chien, Fook Gim Yeong, Wan Zainon Wan Mohd Nazmee. A Study on the Effectiveness of Tree-Maps as Tree Visualization Techniques // Procedia Computer Science. 2017. iss. 124. pp. 108–115.
- Пименов В.И., Пименов И.В. Применение генетического алгоритма для оптимизации дискретной структуры решающего дерева // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 1. Естественные и технические науки. 2020. № 3. C. 55–60.
Arquivos suplementares
