Том 21, № 3 (2022)

Обложка

Весь выпуск

Робототехника, автоматизация и системы управления

Алгоритмы планирования траекторий в двумерной среде с препятствиями

Пшихопов В.Х., Медведев М.Ю., Костюков В.А., Хуссейн Ф., Кадим А.

Аннотация

В данной статье предложены алгоритмы планирования и управления движением мобильного робота в двухмерной стационарной среде с препятствиями. Задача состоит в том, чтобы сократить длину запланированного пути, учесть динамические ограничения робота и получить плавную траекторию. Для учета динамических ограничений мобильного робота на карту добавляются виртуальные препятствия, перекрывающие невыполнимые участки движения. Такой способ учета динамических ограничений позволяет использовать картографические методы без увеличения их сложности. В качестве алгоритма глобального планирования используется модифицированная версия алгоритма быстрого исследования случайных деревьев (Multi parent nodes RRT – MPN-RRT). В этом алгоритме, в отличие от оригинальной версии, используется несколько родительских узлов, что уменьшает длину запланированной траектории по сравнению с исходной версией RRT с одним узлом. Кратчайший путь на построенном графе находится с помощью алгоритма оптимизации муравьиной колонии. Методами численного моделирования показано, что использование двух родительских узлов позволяет уменьшить среднюю длину пути для городской среды с низкой плотностью застройки. Для решения проблемы медленной сходимости алгоритмов, основанных на случайном поиске и сглаживании путей, алгоритм RRT дополнен алгоритмом локальной оптимизации. Алгоритм RRT ищет глобальный путь, который сглаживается и оптимизируется итеративным локальным алгоритмом. Алгоритмы управления нижнего уровня, разработанные в этой статье, автоматически уменьшают скорость робота при приближении к препятствиям или повороте. Общая эффективность разработанных алгоритмов продемонстрирована методами численного моделирования с использованием большого количества экспериментов.

Информатика и автоматизация. 2022;21(3):459-492
pages 459-492 views

Искусственный интеллект, инженерия данных и знаний

Применение сегментной спайковой модели нейрона со структурной адаптацией для решения задач классификации

Корсаков А.М., Астапова Л.А., Бахшиев А.В.

Аннотация

Рассматриваются варианты применения сегментной спайковой модели нейрона с возможностью структурной адаптации для решения задач классификации. Проводится анализ современного состояния спайковых нейронных сетей. Делается вывод о крайне низком количестве работ по исследованию сегментных моделей нейрона. В качестве модели нейрона для данной работы обосновывается выбор сегментной спайковой модели. Приводится краткое описание такой модели, отмечены её основные особенности, позволяющие производить её структурное реконфигурирование. Описывается способ структурной адаптации модели ко входному паттерну импульсов. Приводится общая схема организации сегментных спайковых нейронов в сеть для решения задачи классификации. В качестве кодирования числовой информации в паттерны импульсов выбирается временное кодирование. Приводятся краткие результаты экспериментов по решению задачи классификации на общедоступных наборах данных (Iris, MNIST). Делается вывод о сопоставимости полученных результатов с результатами, полученными классическими методами. Кроме того, приводится подробное пошаговое описание экспериментов по определению состояния телеуправляемого необитаемого подводного аппарата: определение расстояния такого аппарата до дна и определение характера его движения. Показано соответствие полученных результатов реальному состоянию телеуправляемого необитаемого подводного аппарата. Сделан вывод о перспективности применения спайковых сегментных моделей нейрона с возможностью структурной адаптации при решении задач классификации. Рассмотрены дальнейшие перспективные продолжения исследований основанных на сегментных спайковых моделях нейрона.
Информатика и автоматизация. 2022;21(3):493-520
pages 493-520 views

Экспериментальное исследование языковых моделей "трансформер" в задаче нахождения ответа на вопрос в русскоязычном тексте

Галеев Д.Т., Панищев В.С.

Аннотация

Целью исследования является получение более легковесной языковой модели, которая сравнима по показателям EM и F-меры с лучшими современными языковыми моделям в задаче нахождения ответа на вопрос в тексте на русском языке. Результаты работы могут найти применение в различных вопросно-ответных системах, для которых важно время отклика. Поскольку более легковесная модель имеет меньшее количество параметров чем оригинальная, она может быть использована на менее мощных вычислительных устройствах, в том числе и на мобильных устройствах. В настоящей работе используются методы обработки естественного языка, машинного обучения, теории искусственных нейронных сетей. Нейронная сеть настроена и обучена с использованием библиотек машинного обучения Torch и Hugging face. В работе было проведено обучение модели DistilBERT на наборе данных SberQUAD с применением дистилляции и без. Произведено сравнение работы полученных моделей.Обученная в ходе дистилляции модель DistilBERT (EM 58,57 и F-мера 78,42) смогла опередить результаты более крупной генеративной сети ruGPT-3-medium (EM 57,60 и F-мера 77,73) притом, что ruGPT-3-medium имеет в 6,5 раз больше параметров. Также модель продемонстрировала лучшие показатели EM и F-мера, чем та же модель, но к которой применялось только обычное дообучение без дистилляции (EM 55,65, F-мера 76,51). К сожалению, полученная модель сильнее отстаёт от более крупной дискриминационной модели ruBERT (EM 66,83, F-мера 84,95), которая имеет в 3,2 раза больше параметров. Предложены направления для дальнейшего исследования.
Информатика и автоматизация. 2022;21(3):521-542
pages 521-542 views

Анализ и визуализация данных в задачах многокритериальной оптимизации проектных решений

Пименов В.И., Пименов И.В.

Аннотация

Накопление данных о процессах управления проектами и типовых решениях сделало актуальными исследования, связанные с применением методов инженерии знаний для многокритериального поиска вариантов, которые задают оптимальные настройки параметров проектной среды. Цель: разработка методики поиска и визуализации групп проектов, которые могут быть оценены на основе концепции доминирования и интерпретироваться в терминах проектных переменных и показателей эффективности. Методы: обогащение выборки с сохранением неявной связи между проектными переменными и показателями эффективности осуществляется с помощью прогнозирующей нейросетевой модели. Для обнаружения фронта Парето в многомерном критериальном пространстве используется набор генетических алгоритмов. Онтология проектов определяется после кластеризации вариантов в пространстве решений и преобразования кластерной структуры в критериальное пространство. Автоматизация поиска в многомерном пространстве зоны наибольшей кривизны фронта Парето, определяющей равновесные проектные решения, их визуализация и интерпретация осуществляются с помощью плоского дерева решений. Результаты: плоское дерево строится при любой размерности критериального пространства и имеет структуру, которая имеет топологическое соответствие с проекциями разделяемых образов кластеров из многомерного пространства на плоскость. Для различных видов преобразований и корреляций между показателями эффективности и проектными переменными показано, что участки наибольшей кривизны фронта Парето определяются либо содержимым целого кластера, либо частью вариантов, представляющих “лучший” кластер. Если на плоском дереве к правому верхнему углу примыкает неразделенный прямоугольник кластера, то его представители в критериальном пространстве хорошо отделены от остальных кластеров и при максимизации показателей эффективности наиболее приближены к идеальной точке. Все представители такого кластера являются эффективными решениями. Если кластер-победитель содержит внутри дерева решений доминируемые варианты, то “лучший” кластер представляют оставшиеся варианты, которые задают оптимальные настройки проектных переменных. Практическая значимость: предложенная методика поиска и визуализации групп проектов может найти применение при выборе условий ресурсного и организационно-экономического моделирования проектной среды, обеспечивающих оптимизацию рисков, стоимостных, функциональных и временных критериев.
Информатика и автоматизация. 2022;21(3):543-571
pages 543-571 views

Машинное обучение в задачах base-calling для методов секвенирования нового поколения

Бородинов А.Г., Манойлов В.В., Заруцкий И.В., Петров А.И., Курочкин В.Е., Сараев А.С.

Аннотация

Развитие технологий секвенирования следующего поколения (NGS) внесло существенный вклад в тенденции снижения затрат и получения массивных данных секвенирования. В Институте аналитического приборостроения РАН разрабатывается аппаратно-программный комплекс (АПК) для расшифровки последовательности нуклеиновых кислот методом массового параллельного секвенирования (Нанофор СПС). Алгоритмы обработки изображений, входящие в состав АПК, играют существенную роль в решении задач расшифровки генома. Финальной частью такого предварительного анализа сырых данных является процесс base-calling. Base-calling — это процесс определения нуклеотидного основания, которое генерирует соответствующее значение интенсивности в каналах флуоресценции для различных длин волн на кадрах изображения проточной ячейки для различных циклов секвенирования методом синтеза. Приведен обширный анализ различных подходов к решению задач base-calling и сводка распространенных процедур, доступных для платформы Illumina. Рассмотрены различные химические процессы, включенные в технологию секвенирования методом синтеза, вызывающие смещения в значениях регистрируемых интенсивностей, включая эффекты фазирование / префазирование (phasing/prephasing), затухания сигнала (signal decay) и перекрестные помехи (cross-talk). Определена обобщённая модель, в рамках которой рассматриваются возможные реализации. Рассмотрены возможные подходы машинного обучения (machine learning) для создания и оценки моделей, реализующих этап обработки base-calling. Подходы ML принимают различные формы, включая обучение без учителя (unsupervised), обучение с ча-стичным привлечением учителя (semi-supervised), обучение с учителем (supervised). В работе показана возможность применения различных алгоритмов машинного обучения на основе платформы Scikit-learn. Отдельной важной задачей является оптимальное выделение признаков, выделенных в обнаруженных кластерах на проточной ячейке для машинного обучения. Наконец, на ряде данных секвенирования для приборов MiSeq Illumina и Нанофор СПС показана перспективность метода машинного обучения для решения задачи base-calling.
Информатика и автоматизация. 2022;21(3):572-603
pages 572-603 views

Математическое моделирование и прикладная математика

Динамическая модель популяционной инвазии с эффектом депрессии

Переварюха А.Ю.

Аннотация

Статья посвящена исследованию актуального сценария развитияпопуляционных процессов в современных нестабильных биосистемах методами компьютерного моделирования. Биологические инвазии стали чрезвычайно распространеннымявлением из-за изменений климата, целенаправленной деятельности с задачей улучшенияпродуктивности экосистем и случайного стечения обстоятельств. Динамика ситуацийпосле вселения чужеродного вида чрезвычайно разнообразна. Далеко не всегда вселенецгладко занимает экологическую нишу, как в логистических моделях. В отдельныхслучаях реализуется явление вспышки численности вплоть до начала разрушениявидом своей новой среды. Развитие ситуации после инвазии зависит от суперпозициибиотических и абиотических факторов. На динамику численности вселенца влияетблагоприятность сложившихся условий, возможность реализации репродуктивногопотенциала и сопротивление биотического окружения. Противодействие развивается сзапаздыванием и проявляется при достижении вселенцем значительной численности.Обоснована и разработана непрерывная модель инвазионного процесса с резким переходомв состояние депрессии численности. Стадия популяционного кризиса завершается спереходом к равновесию, так как оказываемое биотической средой сопротивление вмодельном сценарии адаптивно и пороговым образом зависит от численности вида-вселенца.Применение вычислительного феноменологического описания сценария с активным,но запаздывающим противодействием среды практически целесообразно для оценкиситуаций при выработке мер искусственного противодействия нежелательному вселенцу. Вмодели существует режим сохранения колебаний после выхода из стадии депрессии, еслиэффективность подавления вселенца оказывается недостаточной.
Информатика и автоматизация. 2022;21(3):604-623
pages 604-623 views

Численное решение задачи фильтрации оценок информационного воздействия на электорат

Логинов К.О.

Аннотация

В статье предложены постановка и численная схема решения задачи фильтрации оценок информационного воздействия средств масс-медиа на электорат, позволяющие с высокой степенью точности на заданном интервале наблюдения определить число индивидов в обществе, отдающих предпочтение определенному политическому субъекту (мнению). Основу постановки задачи составляет математическая модель оценки информационного воздействия на электорат при проведении выборных кампаний, которая сводится к решению стохастического дифференциального уравнения – уравнения состояния. Его исследование при составлении модели фильтрации оценок информационного воздействия предложено свести к численному решению уравнения Дункана–Мортенсена–Закаи при введении дополнительного уравнения наблюдения, которое получается из уравнения состояния при оценке его стохастических компонент (наблюдаемые интенсивности агитации от разнородных средств масс-медиа) методами полиспектрального анализа. Решение уравнения Дункана–Мортенсена–Закаи выполнено в проекционной постановке метода Галёркина при сведении к системе линейных дифференциальных уравнений и получении ее решения при дискретизации интервала анализа на подинтервалы и использования метода матричной экспоненты. Для уточнения особенностей алгоритмической реализации составленной численной схемы сформирована рекурсивная процедура численной фильтрации оценок информационного воздействия, представленная в виде псевдокода. Для наглядного сравнения результативности сформированного численного решения задачи нелинейной фильтрации оценок информационного воздействия средств масс-медиа на электорат проведены расчеты на тестовых выборках большого объема для различных значений количества политических субъектов (мнений) и числа подгрупп, на которые разделяется разнородный социум (электорат). Под результативностью решения понимается апостериорно вычисленная зависимость вероятности принятия ошибочного решения о победе политического субъекта-лидера от дисперсионных параметров нестационарных негауссовских шумов наблюдаемых интенсивностей агитации. Зависимости результативности предложенного решения сравнены с результатами непосредственного численного решения систем уравнений состояния и наблюдения.
Информатика и автоматизация. 2022;21(3):624-652
pages 624-652 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».