


Vol 54, No 4 (2018)
- Year: 2018
- Articles: 15
- URL: https://journal-vniispk.ru/0003-6838/issue/view/9121
Article
Prospects for the Application of Yeast Display in Biotechnology and Cell Biology (Review)
Abstract
The technology of the yeast cell surface display, which appeared 20 years ago and was based on the displaying of target proteins on the cell surface via fusion to an abundant cell wall protein finds broad application in basic and applied research. The main advantage of the cell surface display on the basis of eukaryotic microorganisms—yeast—is the opportunity for correct modification of mammalian proteins. The cell surface display is an important tool for the analysis and understanding of protein function and protein–protein interactions and for the screening of novel clones from peptide and protein libraries. This technology makes it possible to obtain cells with novel abilities, such as catalytic functions and affinity binding to valuable ligands, including rare and heavy metals. It provides the chance to use yeast in biotechnology and in bioremediation and biomonitoring of the environment. The review considers the methods of obtaining a cell surface display on the basis of the yeasts Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica, the properties of anchor proteins, and the main fields of yeast display technology.



Phytases and the Prospects for Their Application (Review)
Abstract
Phytases from plants and microorganisms release phospates from poorly soluble phytates, making the phospates more accessible. In this review, some features and biochemical properties of phytases, as well as the areas and prospects for their use, are under discussion. The introduction of phytases into the fodder for food-producing animals increases the product yield without any additional expenses for mineral phosphates. The presense of phytases in the soils reduces the risk of water eutrophication.



Trends in Oil Production from Oleaginous Yeast Using Biomass: Biotechnological Potential and Constraints
Abstract
In the present scenario of depleting oil reservoir, microbial oil has gained much attention over plant and animal based sources. Among different microorganisms, yeast strains are considered superior source for oil production. The cost of oil produced by yeast could further be lowered using cheaper agro-waste and biomass as substrate. This review focuses on key topics which will help in gaining better understanding to enhance lipid production using yeast strains. The effects of oleaginous yeast co-culturing with microalgae, different cheap carbon sources of biomass, and types of yeast species on oil production were highlighted in the review. An overview of mechanisms of oil production from biomass, viz. pretreatment of biomass, fermentation and oil recovery are also provided. Constraints encountered during the oleogenesis or microbial oil accumulation and their probable solutions along with a section on different by-products obtained during oleo-genesis are also discussed.



Purification and Investigation of Physicochemical and Regulatory Properties of Homogeneous L-Lactate: Cytochrom c Oxidoreductase Obtained from the Nonsulfur Purple Bacterium Rhodovulum steppense
Abstract
L-Lactate: cytochrome c oxidoreductase activity was detected in cells of strain A-20s of the nonsulfur haloalkalophilic purple bacterium Rhodovulum steppense. An electrophoretically homogeneous preparation of the enzyme was obtained by purification. The enzyme had a specific activity of 4.75 U/mg protein, a 81.9-fold purification degree, and a 2.2% yield. The kinetic and physicochemical characteristics were determined. The value of the Michaelis constant with lactate was 15 μM. The temperature optimum for the studied enzyme was 31°C; optimum of pH was 8.2. It was found that the enzyme was a homodimer with a molecular weight of ~140 kDa; the mass of individual subunit was 68 kDa.



Proteolytic Activity of Chymotrypsin Immobilized on Selenium Nanoparticles
Abstract
Chymotrypsin was immobilized as a part of hybrid organo-inorganic nanocomplexes on selenium nanoparticles in the reduction reaction of selenious acid with ascorbic acid. Chymotrypsin stabilized the selenium nanoparticles in the solution. The spectral characteristics of synthesized nanocomplexes and the proteolytic activity of immobilized chymotrypsin were studied. It was shown that the immobilized enzyme had increased proteolytic activity in an alkaline medium.



BSA Adsorption on Porous Scaffolds Prepared from BioPEGylated Poly(3-Hydroxybutyrate)
Abstract
Porous scaffolds for tissue engineering have been prepared from poly(3-hydroxybutyrate) (PHB) and a copolymer of poly(3-hydroxybutyrate) and polyethylene glycol (PHB-PEG) produced by bioPEGylation. The morphology of the scaffolds and their capacity for adsorption of the model protein bovine serum albumin (BSA) have been studied. Scaffolds produced from bioPEGylated PHB adsorbed more BSA, whereas the share of protein irreversibly adsorbed on these scaffolds was significantly lower (33%) than in the case of PHB homopolymer-based scaffolds (47%). The effect of protein adsorption on scaffold biocompatibility in vitro was tested in an experiment that involved the cultivation of fibroblasts (line COS-1) on the scaffolds. PHB-PEG scaffolds had a higher capacity for supporting cell growth than PHB-based scaffolds. Thus, the bioPEGylated PHB-based polymer scaffolds developed in the present study have considerable potential for use in soft tissue engineering.



Cloning, Isolation, and Properties of a New Homologous Exoarabinase from the Penicillium canescens Fungus
Abstract
A novel exo-arabinase (GH93, exo-ABN) enzyme produced by the ascomycete Penicillium canescens has been studied. Cloning of the abn1 gene coding for exo-ABN into the recipient P. canescens strain RN3-11-7 yielded recombinant producing strains characterized by a high yield of extracellular exo- ABN production (20–30% of the total amount of extracellular protein). Chromatographic purification yielded a homogenous exo-ABN with a molecular weight of 47 kDa, as shown by SDS-PAGE. The enzyme showed high specific activity towards linear arabinan (117 U/mg) and low specific activity towards branched arabinan and arabinoxylan (4–5 U/mg) and para-nitrophenyl-α-L-arabinofuranoside (0.3 U/mg), whereas arabinogalactan and para-nitrophenyl-α-L-arabinopyranoside, the substrates that contained the pyranose form of arabinose, were not hydrolyzed. Arabinohexaose was the major product of linear arabinan hydrolysis. Exo-ABN had a pH optimum at 5.0 and a temperature optimum at 60°C. The enzyme was stable in a broad pH range (4.0–7.0) and upon heating to 50°C during 180 min. Extensive hydrolysis of linear and branched arabinans by exo- and endo-arabinase mixtures, arabinofuranosidase, and arabinofuran-arabinoxylan hydrolase has been performed. The degree of substrate conversion amounted to 67 and 83% of the maximal possible value, respectively.



Antimicrobial Peptaibols, Trichokonins, Inhibit Mycelial Growth and Sporulation and Induce Cell Apoptosis in the Pathogenic Fungus Botrytis cinerea
Abstract
Trichokonins (TKs) are antimicrobial peptaibols extracted from Trichoderma pseudokoningii strain SMF2. In this paper, it was discovered that TK VI, the main active ingredient of TKs, had a profound inhibitory effect on the growth and sporulation of the moth orchid gray mold, Botrytis cinerea. In addition, TK VI increased the cell membrane permeability of the pathogen. Further investigation of nuclear DNA fragmentation, subcellular structure disintegration, and mitochondrial membrane potential depolarization, as well as the appearance of reactive oxygen species, indicated that TK VI could induce programmed cell death in the necrotrophic pathogenic fungus B. cinerea.



Expression in Plants of a Recombinant Protein Based on Flagellin Linked to Conservative Fragments of M2 Protein and Hemagglutintin of Influenza Virus
Abstract
The composition of traditional influenza vaccines require nearly annual updates due to the high variability of the influenza virus. The use of conservative viral antigens, the extracellular domain of the transmembrane protein M2, and fragments of the second subunit of hemagglutinin provides the opportunity to create recombinant broad-spectrum vaccines. Bacterial flagellin was used as a mucosal adjuvant to increase the immunogenicity of these conservative antigens. Recombinant proteins based on flagellin simultaneously containing M2e and a fragment of the hemagglutinin stem region were expressed in Nicotiana benthamiana plants using a self-replicating vector based on the potato virus X genome. Methods for their isolation from plants and purification have been developed. The developed expression system can be used to produce a new candidate influenza vaccine in plants.



The Role of Calcium-Dependent Protein Kinase Genes CPK16, CPK25, CPK30, and CPK32 in Stilbene Biosynthesis and the Stress Resistance of Grapevine Vitis amurensis Rupr.
Abstract
It is known that calcium-dependent protein kinases (CDPK or CPK) are implicated in the regulation of plant development and stress adaptation. However, there is a lack of information on the properties and functions of certain CDPK family members. The present study investigates the functions of four CDPK genes of the grapevine Vitis amurensis Rupr. in the formation of its high stress resistance level and the production of valuable secondary metabolites. Overexpression of the CPK30 gene of V. amurensis considerably increased the resistance of V. amurensis transgenic cell lines to salt and cold stresses, while CPK16, CPK25, and CPK32 overexpression did not influence the salt and temperature stress tolerance. VaCPK16 and VaCPK32 overexpression increased stilbene production in V. amurensis cell cultures by 2.1–3.1 and 1.6–3.1 times, respectively. The data indicate that the VaCPK30 gene is involved in the formation of grapevine salt and cold stress resistance, while the VaCPK16 and VaCPK32 genes contribute to increased stilbene accumulation.



Combined Effect of Salicylic Acid and Nitrogen Oxide Donor on Stress-Protective System of Wheat Plants under Drought Conditions
Abstract
Presowing treatment of wheat (Triticum aestivum L.) seeds with 10 or 100 μM salicylic acid (SA) reduced the inhibition of 14-day-old plant growth under soil drought. The same effect was caused by the spraying of 7-day-old seedlings with 0.5 or 2 mM nitrogen oxide donor (sodium nitroprusside, SNP) before drought. The protective effect was enhanced by the combination of seed treatment with 10 μM SA and plant spraying with 0.5 mM SNP, while their combinations in higher concentrations caused weaker effects. SA treatment in both concentrations and 0.5 mM SNP under drought conditions increased the antioxidant enzyme activity (superoxide dismutase, catalase, and guaiacol peroxidase) in leaves. This effect was especially significant when 10 μM SA was combined with 0.5 mM SNP. Spraying with 2 mM SNP and its combination with seed presowing with 100 μM SA did not significantly change the antioxidant enzyme activity; however, the proline content in the leaves increased. It is concluded that the SA stress-protective action on plants can be modified with exogenous nitrogen oxide.



Preparation and Characterization of Alphitobius diaperinus Melanin
Abstract
Melanin with a high antioxidant and sorption activity comparable to that of synthetic dioxyphenylalanine (DOPA)-melanin was isolated from the biomass of the darkling beetle Alphitobius diaperinus. The pigment was extracted with a solution of potassium hydroxide, followed by precipitation with concentrated hydrochloric acid and hydrolysis of the resulting precipitate with the same acid. The electron paramagnetic resonance (EPR) signal of melanin was characteristic of eumelanins with a spin concentration of 4.9 × 1017 spin per 1 g of dry weight. The melanin concentration that induced 50% inhibition of peroxidation was 9.2 μg/mL (the analogous concentration of DOPA-melanin was 8.0 μg/mL). The maximum of methylene-blue binding to the beetle melanin was 700 mg of dye per 1 g of dry weight of the preparation. The lipid-free melanin preparation exhibited antiradical activity.



Bioregeneration of Leaching Solutions during Two-Step Processing of Copper-Zinc Concentrate
Abstract
A comparative study of the oxidation of ferrous iron ions by various cultures of acidophilic chemolithotrophic microorganisms in solutions obtained after ferric leaching of copper-zinc concentrate at 80°C has been carried out. It was shown that the use of a moderately thermophilic culture for bioregeneration of leaching solutions was preferable. At the same time, the oxidation rate of Fe2+ ions reached 0.88 g/(L h), or 21.1 g/(L day). We propose that the activity of the moderately thermophilic culture was due to the presence of the mixotrophic bacteria Sulfobacillus spp., which used organic products of the microbial lysis for their growth. These products were formed during high-temperature ferric leaching of the copper-zinc concentrate with the biosolution.



Highly Sensitive Immunochromatographic Assay for Qualitative and Quantitative Control of Beta-Agonist Ractopamine in Foods
Abstract
An immunochromatographic method has been developed for the determination of ractopamine, a low-molecular, nonsteroidal growth regulator controlled in food due to toxicity. The developed analysis was characterized by an instrument detection limit of 0.05 ng/mL, a working range of 0.07‒0.28 ng/mL, and a visual detection limit of 0.5 ng/mL, which meets the requirements of sanitary and hygienic control. It is shown that the developed immunochromatographic test systems can be used to test meat products.



Optimization of Metabolite Profiling for Black Medick (Medicago lupulina) and Peas (Pisum sativum)
Abstract
Metabolic profiling is a key approach in current basic and applied research in biology. Comparative analysis of different metabolite extraction methods for pea (P. sativum) and black medick (M. lupulina) made it possible to find the optimal conditions for metabolite extraction and subsequent detection by gas chromatography coupled with mass spectrometry. The optimized method was shown to be reliable for assessment of the organ and species metabolic profiles for roots and leaves in pea and black medick plants.


