Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 215, No 3 (2024)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

On a property of the Rademacher system and $\Lambda(2)$-spaces

Astashkin S.V., Semenov E.M.

Abstract

Замкнутая линейная оболочка функций Радемахера в пространстве $L^2[0,1]$ содержит функции со сколь угодно большим распределением при условии, что его отношение к распределению стандартной нормальной величины стремится к нулю. Аналогичный результат получен также для некоторых классов $\Lambda(2)$-пространств.Библиография: 18 названий.
Matematicheskii Sbornik. 2024;215(3):3-20
pages 3-20 views

On the uniqueness of series in the general Franklin system

Gevorkyan G.G.

Abstract

Доказаны некоторые теоремы единственности для рядов по общей системе Франклина. В частности, для рядов по классической системеФранклина она будет звучать следующим образом: если частичные суммы $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ ряда Франклина $\sum_{k=0}^{\infty}a_kf_k(x)$ по мере сходятся к интегрируемой функции $f$ и $\sup_i|S_{n_i}(x)|<\infty$, когда $x\notin B$, где $B$ – некоторое счетное множество и $\sup_i(n_i/n_{i-1})<\infty$, то этот ряд является рядом Фурье–Франклина функции $f$.Библиография: 29 названий.
Matematicheskii Sbornik. 2024;215(3):21-36
pages 21-36 views

On the quantified version of the Belnap–Dunn modal logic

Grefenshtein A.V., Speranski S.O.

Abstract

Разрабатывается кванторная версия пропозициональной модальной логики $\mathsf{BK}$ из статьи С. П. Одинцова и Х. Вансинга, в основе которой лежит (немодальная) система Белнапа–Данна; обозначим эту версию через $\mathsf{QBK}$. Сначала с помощью метода канонических моделей докажем, что $\mathsf{QBK}$, как и некоторые важные ее расширения, сильно полна относительно подходящей семантики возможных миров. Затем определим трансляции (в духе Гёделя–МакКинси–Тарского), точно вкладывающие кванторные версии конструктивных логик Нельсона в подходящие расширения $\mathsf{QBK}$. В заключение обсудим интерполяционные свойства для $\mathsf{QBK}$-расширений.Библиография: 21 название.
Matematicheskii Sbornik. 2024;215(3):37-69
pages 37-69 views

Distribution of zeros of entire functions of exponential growth

Kazarnovskii B.Y.

Abstract

Для систем уравнений с бесконечным числом корней иногда удается получить теоремы типа Кушниренко–Бернштейна–Хованского, заменяя вычисление числа корней на вычисление их асимптотической плотности. Мы рассматриваем системы целых функций экспоненциального роста в пространстве $\mathbb C^n$ и вычисляем асимптотику усредненного распределения корней в терминах геометрии выпуклых тел, расположенных в комплексном векторном пространстве.Библиография: 11 названий.
Matematicheskii Sbornik. 2024;215(3):70-79
pages 70-79 views

Localization of window functions of dual and tight gabor frames generated by the Gaussian function

Kiselev E.A., Minin L.A., Novikov I.Y., Ushakov S.N.

Abstract

Рассматриваются фреймы Габора, порожденные функцией Гаусса. С помощью констант неопределенности оценивается локализация функций двойственных фреймов в зависимости от соотношения параметров частотно-временного окна и степени переполненности. Общий вывод таков: при увеличении диспропорции окна локализация быстро ухудшается. С другой стороны, чем более переопределена исходная система функций, тем лучше локализованы функции двойственного фрейма. Для жесткого фрейма локализация при одном и том же наборе параметров существенно лучше, чем для двойственного фрейма. Рассматриваемая задача тесно связана с задачей интерполяции по равномерным сдвигам функции Гаусса. Построение узловой функции при интерполяции и функции окна двойственного фрейма осуществляется с помощью одних и тех же коэффициентов. Эти коэффициенты играют важную роль и при выводе формул для констант неопределенности. Поэтому в работе изучаются их свойства, связанные со знакочередуемостью и монотонностью убывания по модулю.Библиография: 38 названий.
Matematicheskii Sbornik. 2024;215(3):80-99
pages 80-99 views

On the recovery of analytic functions that is exact on subspaces of entire functions

Osipenko K.Y.

Abstract

Построены семейства оптимальных методов восстановления аналитических в полосе функций и их производных по неточно заданному следу преобразования Фурье этих функций на вещественной оси. При этом от методов дополнительно требуется, чтобы они были точны на подпространствах целых функций.Библиография: 12 названий.
Matematicheskii Sbornik. 2024;215(3):100-118
pages 100-118 views

Local structure of convex surfaces

Plakhov A.Y.

Abstract

Рассмотрим точку на поверхности выпуклого тела и опорную плоскость к телу в этой точке. Проведем плоскость, параллельную данной опорной плоскости и отсекающую некоторую часть поверхности. Мы изучаем предельное поведение отсеченной части поверхности, когда секущая плоскость приближается к заданной точке. Более точно, изучается предельное поведение подходящим образом нормированной поверхностной меры в $S^2$, порожденной этой частью поверхности. Рассматриваются случаи, когда точка является регулярной и когда она особая: коническая или ребристая. Опорная плоскость может быть по-разному расположена по отношению к касательному конусу в данной точке: может пересекаться с конусом по вершине, прямой (если точка является особой ребристой), плоскому углу (который может вырождаться в луч или полуплоскость) или по плоскости (если точка регулярная и соответственно конус вырождается в полупространство). В случае пересечения по лучу плоскость может касаться конуса (односторонним или двусторонним образом) или же нет.Оказывается, предельное поведение меры может быть разным. В случае пересечения опорной плоскостью конуса по вершине или в случае (одностороннего или двустороннего) касания слабый предел всегда существует и однозначно определяется по плоскости и по конусу. В случае же пересечения по прямой или лучу при отсутствии касания предел может вообще не существовать. В последнем случае дана характеризация всех возможных слабых частичных пределов.Библиография: 13 названий.
Matematicheskii Sbornik. 2024;215(3):119-158
pages 119-158 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».