Study of the Sensor Properties of Ordered ZnO Nanorod Arrays for the Detection of UV Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Zinc oxide is one of the most promising materials used to create devices in the ultraviolet (UV) range. In this article, we study the sensor properties of ordered ZnO nanorod arrays grown by chemical vapor deposition. The possibility of their use as an indicator of UV radiation to control the dose of UV radiation, both from natural and artificial light sources, is assessed. The X-ray diffraction, Raman spectroscopy (RS), and cathodoluminescence (CL) data demonstrate the high quality of nanorods. Based on the ZnO nanorod array, a sensor prototype was fabricated based on the change in ZnO conductivity under the UV irradiation. A compari-son of the response of such a sensor with the readings of a UV radiometer showed a high correlation.

About the authors

M. V. Evstafieva

Institute of Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ryzhova@iptm.ru
Chernogolovka, Moscow region, 142432 Russia

M. A. Knyazev

Institute of Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ryzhova@iptm.ru
Chernogolovka, Moscow region, 142432 Russia

V. I. Korepanov

Institute of Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ryzhova@iptm.ru
Chernogolovka, Moscow region, 142432 Russia

A. N. Red’kin

Institute of Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ryzhova@iptm.ru
Chernogolovka, Moscow region, 142432 Russia

D. V. Roschupkin

Institute of Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Email: ryzhova@iptm.ru
Chernogolovka, Moscow region, 142432 Russia

E. E. Yakimov

Institute of Problems of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences

Author for correspondence.
Email: ryzhova@iptm.ru
Chernogolovka, Moscow region, 142432 Russia

References

  1. Altmeyer P., Hoffmann K., Stücker M., Freitag M. Skin Cancer and UV Radiation. Springer; 1997.
  2. Özgür Ü., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Doğan S. et al. A comprehensive review of ZnO materials and devices // J. Applied Physics. 2005. P. 041301. https://doi.org/10.1063/1.1992666
  3. Yi F., Liao Q., Yan X., Bai Z., Wang Z., Chen X. et al. Simple fabrication of a ZnO nanorod array UV detector with a high performance // Physica E Low Dimens Syst Nanostruct. 2014. V. 61. P. 180–184.
  4. Rodwihok C., Choopun S., Ruankham P., Gardchareon A., Phadungdhitidhada S., Wongratanaphisan D. UV sensing properties of ZnO nanowires/nanorods // Applied Surface Science. 2019. P. 159–165. https://doi.org/10.1016/j.apsusc.2017.11.056
  5. Sang L., Liao M., Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures // Sensors. 2013. V. 13. P. 10482–10518.
  6. Wei A., Pan L., Huang W. Recent progress in the ZnO nanostructure-based sensors // Materials Science and Engineering: B. 2011. P. 1409–1421. https://doi.org/10.1016/j.mseb.2011.09.005
  7. Kushwaha A., Aslam M. Defect induced high photocurrent in solution grown vertically aligned ZnO nanowire array films // J. Applied Physics. 2012. P. 054316. https://doi.org/10.1063/1.4749808
  8. Reddy N.K., Ahsanulhaq Q., Kim J.H., Devika M., Hahn Y.B. Selection of non-alloyed ohmic contacts for ZnO nanostructure based devices // Nanotechnology. 2007. V. 18. P. 445710.
  9. Serrano J., Manjón F.J., Romero A.H., Widulle F., Lauck R., Cardona M. Dispersive phonon linewidths: the E2 phonons of ZnO // Phys Rev Lett. 2003. V. 90. P. 055510.
  10. McCluskey M.D. Defects in ZnO. Defects in Advanced Electronic Materials and Novel Low Dimensional Structures. 2018. P. 1–25. https://doi.org/10.1016/b978-0-08-102053-1.00001-6
  11. Shasti M., Dariani R.S. Study of growth time and post annealing effect on the performance of ZnO nanorods ultraviolet photodetector // J. Applied Physics. 2017. P. 064503. https://doi.org/10.1063/1.4975674
  12. Redkin A.N., Yakimov E.E., Evstafieva M.V., Yakimov E.B. Grown and characterization of ZnO aligned nanorod arrays for sensor applications // Energies. 2021. V. 14. P. 3750.
  13. Hullavarad S., Hullavarad N., Look D., Claflin B. Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors. Nanoscale Research Letters. 2009. https://doi.org/10.1007/s11671-009-9414-7
  14. Al-Asadi A.S., Henley L.A., Ghosh S., Quetz A., Dubenko I., Pradhan N. et al. Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method // J. App-l. Phys. 2016. V. 119. P. 084306.
  15. Barbagiovanni E.G., Strano V., Franzò G., Crupi I., Mirabella S. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition // Applied Physics Letters. 2015. P. 093108. https://doi.org/10.1063/1.4914067
  16. Li Y., Della Valle F., Simonnet M., Yamada I., Delaunay J.-J. Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires // Appl. Phys. Lett. 2009. V. 94. P. 023110.
  17. Li Y., Della Valle F., Simonnet M., Yamada I., Delaunay J.-J. High-performance UV detector made of ultra-long ZnO bridging nanowires // Nanotechnology. 2009. V. 20. P. 045501.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (743KB)
3.

Download (111KB)
4.

Download (67KB)
5.

Download (88KB)
6.

Download (103KB)
7.

Download (202KB)

Copyright (c) 2023 М.В. Евстафьева, М.А. Князев, В.И. Корепанов, А.Н. Редькин, Д.В. Рощупкин, Е.Е. Якимов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».