The Effect оf Laser Radiation оn Functional Properties of MOS Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electrophysical properties of instrument MOSFET structures (capacitor, field-effect transistor with an isolated gate and an induced channel, CMOS integrated circuit) when exposed to unmodulated laser radiation are studied. Static and dynamic characteristics were measured. The theoretical study was carried out using the developed SPICE models and numerical experiments. An expression is obtained for the volt-ampere characteristic of a field-effect transistor operating in a mode with constant optical illumination. It is shown that the characteristics of the structures are determined by the generation and recombination of nonequilibrium charge carriers, the field effect, the photovoltaic effect in pn junctions, the photo-Dember effect and tunneling of charge carriers through a gate dielectric. The results of the work are of interest from the point of view of creating high-speed transistors and integrated circuits of a new type.

About the authors

S. Sh. Rekhviashvili

Institute of Applied Mathematics and Automation KBSC RAS

Author for correspondence.
Email: rsergo@mail.ru
Russian Federation, Nalchik

D. S. Gaev

Kabardino-Balkarian State University

Email: rsergo@mail.ru
Russian Federation, Nalchik

References

  1. Vavilov V.S., Kekelidze N.P., Smirnov L.S. The effect of radiation on semiconductors. Moscow: Nauka, 1988. 190 p. (In Russian)
  2. Rekhviashvili S.Sh., Narozhnov V.V. A method for increasing the performance of transistors and transistor integrated circuits. RF Patent No. 2799113. Priority of March 18, 2022.
  3. Al’tudov Y.K., Gaev D.S., Pskhu A.V., Rekhviashvili S.Sh. Optically pumped bipolar transistor // Russ Microelectron. 2023. V. 52. P. 510—516. https://doi.org/10.1134/S1063739723700762
  4. Rekhviashvili S.Sh., Gaev D.S. Investigation of the effect of optical radiation on the TTL-type integrated circuit // Izvestiya VUZov. Electronics. 2024. V. 29. No. 3 (in print).
  5. Volodin V.Ya. LTspice: computer modeling of electronic circuits. St. Petersburg: BKhV-Peterburg, 2010. 400 p. (In Russian)
  6. Wlodarski W., Bergveld P., Voorthuyzen J.A. Threshold voltage variations in n-channel MOS transistors and MOSFET-based sensors due to optical radiation // Sensors and Actuators. 1986. V. 9. No. 4. P. 313—321. https://doi.org/10.1016/0250-6874(86)80063-4
  7. Sze S.M., Ng Kwok K. Physics of semiconductor devices. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006. 815 p.
  8. Ferry D.K., Akers L.A., Greeneich E.W. Ultra large scale integrated microelectronics (Prentice Hall Advanced Reference Series). Prentice Hall, 1988. 285 p.
  9. Efanov A.V., Entin M.V. Theory of the hot-electron Dember emf. // Sov. Phys. Semicond. 1986. V. 20. No. 1. P. 11—13.
  10. Hofstein S.R., Heiman F.P. The silicon insulated-gate field-effect transistor // Proceedings of the IEEE. 1963. V. 51. No. 9. P. 1190—1202. https://doi.org/10.1109/PROC.1963.2488
  11. Krasnikov G.Ya. Design and technological features of submicron MOSFETS. Moscow: Teknosfera, 2011. 800 p. (In Russian)
  12. Veiko V.P., Libenson M.N., Chervyakov G.G., Yakovlev E.B. Interaction of laser radiation with matter. Moscow: Fizmatlit, 2008. 312 p. (In Russian)
  13. Terekhov V.A., Man’ko A.N., Bormontov E.N., Levchenko V.N., Trebunskikh S. Yu., Tutov E.A., Domashevskaya E.P. Influence of ultrashort pulses of electromagnetic radiation on parameters of metal-insulator-semiconductor structures // Semiconductors. 2004. V. 38. P. 1390—1393. https://doi.org/10.1134/1.1836058
  14. Nikiforov A.Y., Skorobogatov P.K., Egorov A.N., Gromov D.V. Selection of optimal parameters of laser radiation for simulating ionization effects in silicon bulk-technology microcircuits // Russ. Microelectron. 2014. V. 43. P. 133—138. https://doi.org/10.1134/S1063739714020073
  15. Skorobogatov P.K., Nikiforov A.Y., Egorov A.N. Optimization of laser irradiation parameters for simulation of a transient radiation response in thin-film silicon-based microcircuits // Russ Microelectron. 2015. V. 44. P. 8—21. https://doi.org/10.1134/S1063739715010084
  16. Denisenko V.V. Compact models of MOS transistors for SPICE in micro- and nanoelectronics. Moscow: Fizmatlit, 2010. 408 p. (In Russian)
  17. Krasnikov G.Ya., Gornev E.S., Ignatov P.V., Mizginov D.S. Analysis of gate dielectric breakdown models // Electronic technology. Series 3: Microelectronics. 2018. No. 2(170). P. 5—7. (In Russian)
  18. Sawa A. Resistive switching in transition metal oxides // Materials Today. 2008. V. 11. No. 6. P. 28—36. https://doi.org/10.1016/S1369-7021(08)70119-6
  19. Gorshkov O.N., Shengurov V.G., Denisov S.A., Chalkov V.Yu., Antonov I.N., Kruglov A.V., Shenina M.E., Kotomina V.E., Filatov D.O., Serov D.A. Resistive switching in memristors based on Ag/Ge/Si heterostructures // Tech. Phys. Lett. 2020. V. 46. No. 1. P. 91—93. https://doi.org/10.1134/S106378502001023X
  20. Permyakova O.O., Rogozhin A.E. Simulation of resistive switching in memristor structures based on transition metal oxides // Russ. Microelectron. 2020. V. 49. No. 5. P. 303—313.
  21. Demikhovsky V.Ya., Vugalter G.A. Physics of quantum low-dimensional structures. Moscow: Logos, 2000. 246 p. (In Russian)
  22. Vul’ A.Ya., Dideikin A.T. Photodetectors based on metal-tunnel insulator-semiconductor structures // Sensors and Actuators A: Physical. 1993. V. 39. No. 1. P. 7—18. https://doi.org/10.1016/0924-4247(93)80175-G
  23. Vexler M.I., Tyaginov S.E., Shulekin A.F., Grekhov I.V. Current-voltage characteristics of Al/SiO2/p-Si MOS tunnel diodes with a spatially nonuniform oxide thickness // Semiconductors. 2006. V. 40. P. 1109—1115. https://doi.org/10.1134/S1063782606090223
  24. Belorusov D.A., Goldman E.I., Chucheva G.V. Franz-Keldysh effect in silicon—ultrafine (3.7 nm) oxide-polysilicon structures // Journal of Communications Technology and Electronics. 2023. V. 68. No. 9. P. 1002—1005. https://doi.org/10.1134/S1064226923090036
  25. Pirogov Yu.A., Solodov A.V. Damage to integrated circuits in radio-frequency fields // Radio electronics journal. 2013. No. 6. P. 1—38. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».