TERNARY MEMORY CELLS BASED ON PERFORATED MAGNETIC FILMS
- Authors: Magadeev E.B1, Vakhitov R.M1, Kanbekov R.R1
-
Affiliations:
- Ufa University of Science and Technology
- Issue: Vol 54, No 6 (2025)
- Pages: 545–552
- Section: MEMORY
- URL: https://journal-vniispk.ru/0544-1269/article/view/360430
- DOI: https://doi.org/10.7868/S3034548025060075
- ID: 360430
Cite item
Abstract
About the authors
E. B Magadeev
Ufa University of Science and Technology
Email: magadeeveb@gmail.com
Ufa, Russia
R. M Vakhitov
Ufa University of Science and Technology
Email: vakhitovrm@yahoo.com
Ufa, Russia
R. R Kanbekov
Ufa University of Science and TechnologyUfa, Russia
References
- Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater. 2017, vol. p. 2, 17031.
- Kumar D., Jin T., Sbiaa R. et al. Domain wall memory: Physics, materials, and devices, Phys. Rep. 2022, vol. 958, p. 1.
- Vakili H., Xu J.-W., Zhou W. et al. Skyrmionics–Computing and memory technologies based on topological excitations in magnets, J. Appl. Phys. 2021, vol. 130, p. 070908.
- Everschor-Sitte K., Masell J., Reeve R.M., Kläui M. Perspective: Magnetic skyrmions–Overview of recent progress in an active research field, J. Appl. Phys. 2018, vol. 124, p. 240901.
- Samardak A.S., Kolesnikov A.G., Davydenko A.V. et al. Topologically Nontrivial Spin Textures in Thin Magnetic Films, Phys. Metals Metallogr. 2022, vol. 123, p. 238.
- Navas D., Verba R.V., Hierro-Rodriguez A. et al. Route to form skyrmions in soft magnetic films, APL Mater. 2019, vol. 7, p. 081114.
- Luo S., You L. Skyrmion devices for memory and logic applications, APL Mater. 2021, vol. 9, p. 050901.
- Yu X., Onose Y., Kanazawa N. et al. Real-space observation of a two-dimensional skyrmion crystal, Nature. 2010, vol. 465, p. 901.
- Sharafullin I.F., Diep H.T.. Skyrmions and Spin Waves in Magneto–Ferroelectric Superlattices, Entropy. 2020, vol. 22, p. 862.
- Hog S.El., Sharafullin I.F., Diep H.T. et al. Frustrated antiferromagnetic triangular lattice with Dzyaloshinskii–Moriya interaction: Ground states, spin waves, skyrmion crystal, phase transition, J. Magn. Magn. Mater. 2022, vol. 563, p. 169920.
- Sapozhnikov M.V., Vdovichev S.N., Ermolaeva O.L. et al. Artificial dense lattice of magnetic bubbles, Appl. Phys. Lett. 2016, vol. 109, p. 042406.
- Sapozhnikov M.V., Petrov Y.V., Gusev N.S. et al. Artificial Dense Lattices of Magnetic Skyrmions, Materials. 2020, vol. 13, p. 99.
- Bogatyrev A.B., Metlov K.L.. Metastable states of sub-micron scale ferromagnetic periodic antidot arrays, J. Magn. Magn. Mater. 2019, vol. 489, p. 165416.
- Cowburn R.P., Adeyeye A.O., Bland J.A.C. Magnetic domain formation in lithographically defined antidot Permalloy arrays, Appl. Phys. Lett. 1997, vol. 70, p. 2309.
- Xu M., Zhang J., Meng D. et al. The influence of introducing holes on the generation of skyrmions in nanofilms, Phys. Lett. A. 2022, vol. 433, p. 128034.
- Magadeev E.B., Vakhitov R.M. JETP Letters. Structure of magnetic inhomogeneities in films with topological features, 2022, vol. 115, p. 114.
- Magadeev E.B., Vakhitov R.M., Kanbekov R.R. Theory of vortex-like structures in perforated magnetic films accounting demagnetizing fields, JETP. 2022, vol. 135, p. 364.
- Magadeev E.B., Vakhitov R.M., Kanbekov R.R. Stability of nontrivial magnetic structures in ferromagnetic films with antidots, J. Phys.: Condens. Matter. 2023, vol. 35, p. 015802.
- Magadeev E., Vakhitov R., Sharafullin I. Mechanism of Topology Change of Flat Magnetic Structures, Entropy. 2022, vol. 24, p. 1104.
- Hubert А., Shafer R. Magnetic Domains. Berlin. Springer-Verlag, 2007.
- Donahue M.J., Porter D.G. OOMMF User’s Guide, version 2.0a3. National Institute of Standard and Technolog: Gaithersburg, MD, USA, 2021; Websites: https://math.nist.gov/oommf/doc/userguide20a3/userguide/
Supplementary files


