Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 525, Nº 1 (2025)

Capa

Edição completa

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

MATHEMATICS

MATHEMATICAL AND NEURAL NETWORK MODELS OF CONTROL AND OPTIMIZATION OF ECONOMIC DEVELOPMENT

Akaev A., Sadovnichy V.

Resumo

The article presents a concept for developing artificial intelligence (AI) based on a hybrid model that uses, on the one hand, verified mathematical models to calculate and forecast potential trend trajectories of long-term socio-economic development, and on the other hand, short- and medium-term models of crisis phenomena for training a neural network with its subsequent use to determine the real economic situation and develop an appropriate optimal policy for managing current socio-economic development. It is proposed to build AI on the basis of the Kolmogorov–Arnold neural network, which is increasingly used to create AI designed to solve physical and engineering problems, including those related to the management of various dynamic processes. The advantage of the hybrid model proposed for the first time is its complete transparency in relation to identifying cause-and-effect relationships between the main factors and output in the process of socio-economic development.

Doklady Mathematics. 2025;525(1):5-11
pages 5-11 views

NON-ESSENTIAL EXPANSIONS OF WEAKLY O-MINIMAL THEORIES OF FINITE CONVEXITY RANK

Altayeva A., Kulpeshov B., Sudoplatov S.

Resumo

We study constant expansions of weakly o-minimal theories of finite convexity rank having less than 2ω countable models. We prove that any non-essential expansion (expansion by finitely many new constants) of a weakly o-minimal Ehrenfeucht theory of finite convexity rank preserves Ehrenfeuchtness. We also establish that the countable spectrum of such an expanded theory is not decreased.
Doklady Mathematics. 2025;525(1):12-23
pages 12-23 views

ON CONDITIONS FOR DOBRUSHIN’S CENTRAL LIMIT THEOREM FOR NON-HOMOGENEOUS MARKOV CHAINS

Veretennikov A., Nurieva A.

Resumo

A new sufficient condition is proposed in the problem of Central Limit Theorem in the array scheme for non-homogeneous Markov Chains, with a possibility that the minimum of Markov-Dobrushin’s ergodic coefficient may be closer to zero than in Dobrushin’s main condition, or even equal to zero.
Doklady Mathematics. 2025;525(1):24-30
pages 24-30 views

MODAL LOGICS WITH THE COMPLEMENT MODALITY

Zolin E.

Resumo

Modal logic with two operators, one for the accessibility relation on a Kripke model and the other for its complement, was studied first by Humberstone in 1983 [5], who axiomatized it using an infinite number of axioms. In this paper we suggest a finite axiomatization of this logic, and also axiomatize the corresponding logics of some natural classes of Kripke frames.
Doklady Mathematics. 2025;525(1):31-39
pages 31-39 views

WEAK SOLVABILITY OF THE INITIAL BOUNDARY VALUE PROBLEM FOR THE INHOMOGENEOUS INCOMPRESSIBLE VOIGT MODEL WITH FULL TIME DERIVATIVE

Zvyagin V., Turbin M.

Resumo

The paper is devoted to proving the existence of a weak solution to the initial-boundary value problem for the non-homogeneous incompressible Voigt fluid motion model with full derivative in the rheological relation. For the proof, a problem approximating the original one is considered, and its solvability is proved using the Leray-Schauder theorem. After that, passing to the limit in the approximation problem as the approximation parameter tends to zero, it is shown that, up to a subsequence, the solutions of the approximation problem weakly converge to a weak solution of the original problem.
Doklady Mathematics. 2025;525(1):40-46
pages 40-46 views

SINGLE POINT PENALIZATION FOR SYMMETRIC LEVY PROCESSES

Abildaev T.

Resumo

We consider a one-dimensional symmetric Levy process ξ(t), t ≥ 0, that has local time, which we denote by L(t, x), and construct the operator A + μ δ(x − a), μ > 0, where A is the generator of ξ(t), and δ(x − a) is the Dirac delta function at a ∈ ℝ. We show that the constructed operator is the generator of (Ut)t ≥ 0 – C0-semigroup on L2(ℝ), which is given by (Ut f)(x) = E f (x − ξ(t)) eμ L(t,x−a), f ∈ L2(ℝ) ∩ Cb(ℝ), and prove the Feynman–Kac formula for the delta function-type potentials. Furthermore, we construct a family of penalized distributions {QT,xμ}T ≥ 0 of form QT,xμ = eμ L(T,x−a) / Eeμ L(T,x−a) PT,x, where PT,x is the measure of the process ξ(t), t ≤ T. We show that this family weakly converges to a Feller process as T → ∞, study the Feynman–Kac semigroup generated by this Feller process and prove a limit theorem for the distribution of ξ(T) under QT,x.
Doklady Mathematics. 2025;525(1):47-51
pages 47-51 views

PERIODICITY OF MORPHIC WORDS

Belov A., Mitrofanov I., Allemand A.

Resumo

In this paper, we prove the decidability of the ultimate periodicity problem (the HD0L periodicity problem).
Doklady Mathematics. 2025;525(1):52-56
pages 52-56 views

PSEUDOANALYTIC SOLUTIONS OF SINGULARLY PERTURBED EQUATIONS IN BANACH ALGEBRAS

Kachalov V.

Resumo

The small parameter method proposed by A. Poincare allows constructing solutions to singularly perturbed problems in the form of series by degrees of a small parameter, which converge, as a rule, asymptotically. At the same time, the decomposition theorems he proved, in the regular case guarantee the existence of solutions analytically dependent on the parameter. The regularization method of S. A. Lomov reduces a singularly perturbed problem to a regularly perturbed one and makes it possible to build solutions in the form of series converging in the usual sense. This paper studied the Burgers type differential equation given in Banach algebra.
Doklady Mathematics. 2025;525(1):57-61
pages 57-61 views

REGULARIZED HYDRODYNAMIC EQUATIONS IN A PROBLEM OF TURBULENT FLOW MODELING IN A PIPE

Elizarova T., Kiryushina M.

Resumo

The problem of the development of hydrodynamic instability in a pipe at moderate Reynolds numbers for the flow of a viscous incompressible fluid is considered. Numerical simulation is performed on the basis of regularized or quasi-hydrodynamic equations. The simulation was carried out by the finite volume method implemented by the authors within the framework of an open source software package using parallel technologies. Within the framework of this approach, it is shown in a direct numerical experiment that random perturbations of the inlet velocity in a pipe attenuate for subcritical Reynolds numbers and lead to the formation of a turbulent regime for supercritical values. This result shows the prospects of using regularized equations of hydrodynamics as a new alternative model in calculations of laminar-turbulent transition in incompressible liquid and gas in pipeline systems, including estimates of the pipe resistance coefficient.
Doklady Mathematics. 2025;525(1):62-70
pages 62-70 views

ABOUT ONE KINETIC MODEL FOR DESCRIBING TURBULENT FLOWS TAKING INTO ACCOUNT HEAT TRANSFER

Chetverushkin B., Lutsky A., Shilnikov E.

Resumo

A closed system of equations is obtained to describe spatially two-dimensional flows taking into account turbulent heat transfer. Additional equations for pulsation moments and the analysis of the coefficient of turbulent thermal conductivity are derived based on the kinetic equation previously used to derive a quasi-gas dynamic system of equations. The results of simulation the problem of the turbulent flow of a hot plane jet are presented.
Doklady Mathematics. 2025;525(1):71-77
pages 71-77 views

ON ASYMPTOTIC PROPERTIES OF DISTANCE CORRELATION WITH CENSORED RESPONSE

Rodionov I.

Resumo

We consider asymptotic properties of the empirical correlation coefficient with survival response, based on the famous distance correlation and initially proposed in [1]. We show that this empirical coefficient is consistent and asymptotically normal for corresponding correlation measure and, if the survival time and uncensored feature are independent, establish its convergence to a Gaussian chaos.
Doklady Mathematics. 2025;525(1):78-82
pages 78-82 views

ON A GRID-CHARACTERISTIC SECOND ORDER SCHEME FOR SYSTEMS OF HYPERBOLIC EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS ON NON-FITTED MESHES

Shilnikov K., Khokhlov N., Petrov I.

Resumo

In this paper, a novel approach to increasing the accuracy of the grid-characteristic method in the area of a coefficient jump for cases of an non-fitted computational grid is presented.
Doklady Mathematics. 2025;525(1):83-90
pages 83-90 views

THE IMAGE OF THE FUNCTIONAL CONTINUED FRACTION EXPANSION IN THE JACOBIAN VARIETY OF A HYPERELLIPTIC CURVE

Fedorov G.

Resumo

There is constructed a canonical mapping from the sequence of complete quotients in the functional continued fraction expansion of a quadratic irrationality in a hyperelliptic field to the Jacobian of the associated hyperelliptic curve.
Doklady Mathematics. 2025;525(1):91-97
pages 91-97 views

Varieties of aperiodic monoids with a distributive lattice of subvarieties

Gusev S.

Resumo

A monoid is called aperiodic if all its subgroups are trivial. The paper describes varieties of aperiodic monoids whose lattice of subvarieties is distributive.
Doklady Mathematics. 2025;525(1):98-101
pages 98-101 views

ARROW’S SINGLE-PEAKED DOMAINS

Karpov A.

Resumo

The paper studies structured preferences domains that avoid configuration with three different third elements in three elements restrictions (Arrow’s single-peaked domains). The number of Arrow’s single-peaked domains and the number of non-isomorphic classes of Arrow’s single-peaked domains are found. We present a forbidden submatrix characterization for matrix representation of Arrow’s single-peaked preferences.
Doklady Mathematics. 2025;525(1):102-108
pages 102-108 views

TO THE THEORY OF POLYNOMIAL MODELS OF DISCRETE DYNAMIC SYSTEMS

Popkov Y.

Resumo

The paper develops the framework of Kronecker products over the field of real numbers and the field of predicates. Procedures and logical structures of algorithms transforming Kronecker vectors into vectors in extended spaces are constructed. The application of the developed framework for mathematical modeling of polynomial discrete dynamic systems is considered and a method for their transformation to a quasilinear form is developed. The latter is used to generate data ensembles with given numerical characteristics and randomized forecasting. Discrete polynomial systems with feedback are considered. Their solution in the form of a multidimensional power series is constructed and its convergence is studied.
Doklady Mathematics. 2025;525(1):109-129
pages 109-129 views

ON ESTIMATES ON THE EXPONENT IN THE CONSTRUCTION OF FINITELY PRESENTED INFINITE SEMIGROUP

Ivanov-Pogodaev I.

Resumo

The work is devoted to improving the exponent in the construction of a finitely defined infinite nil semigroup. The construction addresses the Shevrin–Saper question, posed in particular in the Sverdlov Notebook (3.81b) [3]. Additionally, the construction is one of the first examples of Burnside-type constructions in the finitely defined case. The development is part of a series of works [4–8]. The initial version of the construction was carried out for the exponent 9, i.e., an infinite finitely defined nil semigroup with the identity x9 = 0 was constructed.
Doklady Mathematics. 2025;525(1):130-134
pages 130-134 views

ON THE GALOIS CONNECTION FOR CLOSED CLASSES OF INFINITARY FUNCTIONS

Polyakov N., Shamolin M.

Resumo

In this paper, Galois theory is developed for closed sets of functions of any ordinal arity. The classical theorem on Galois-closed classes of functions and sets of predicates on finite sets is transferred to the general case.
Doklady Mathematics. 2025;525(1):135–143
pages 135–143 views

ПРОЦЕССЫ УПРАВЛЕНИЯ

OBSERVATION OF THE FLOW OF OBJECTS ON A GEODETIC ARC IN 3 IN CONDITIONS OF COUNTERACTION

Berdyshev V.

Resumo

This paper proposes methods for an observer f to track a flow of objects ti moving at constant velocity along a smooth geodesic trajectory T, composed of a segment and an arc Λ. The observer detects pairs of objects at the moments they pass through predetermined fixed control points evenly distributed along T. An unfriendly object, after being detected, may direct a dangerous mini-object toward the observer. The work presents algorithmic approaches for tracking objects moving along straight-line segments and smooth arcs.
Doklady Mathematics. 2025;525(1):144-148
pages 144-148 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».