Том 71, № 3 (2025): Proceedings of the Crimean Autumn Mathematical School-Symposium

Мұқаба

Бүкіл шығарылым

Articles

On one method for solving the initial-boundary value problem for the Gardner equation

Bezrodnykh S., Pikulin S.

Аннотация

In this paper, the efficient solution is considered for an initial-boundary value problem for the Gardner equation: a spatially one-dimensional nonlinear evolution equation describing a broad class of dispersive autowave processes. A numerical-analytical method is proposed based on a combination of explicit and implicit time discretization schemes for various terms of the differential operator. A new efficient algorithm is developed to solve a sequence of auxiliary linear problems, relying on analytical representations using an explicit form of the fundamental system of solutions. An example of a numerical solution of the initial-boundary value problem for the Gardner equation is considered, and the result is compared with a known exact solution of the solitary traveling wave type.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):353-369
pages 353-369 views

Modeling of evolutionary strategies of interacting populations in a heterogeneous habitat

Zelenchuk P., Tsybulin V.

Аннотация

Using a predator-prey model in a heterogeneous environment, we have created a mathematical model that describes the interaction between populations with different evolutionary strategies. The model is based on partial differential equations and allows for the consideration of multifactor taxis. We propose modified functions of local predator-prey interactions, which provide a variety of evolutionary strategies for the system. Key parameters responsible for the formation of ideal free distribution strategies have been investigated, and conditions for the parameters of diffusion and migration have been given under which ideal free distribution-like strategies can be implemented. Results from computational experiments demonstrating stationary and oscillating modes have been presented.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):370-384
pages 370-384 views

Modeling of the study of viscoelastic deformation of elastic bodies

Neskorodev R., Zyza A.

Аннотация

This article proposes a numerical-analytical method for solving linear viscoelasticity problems of an anisotropic solid without the need for explicit analytical representations of creep and relaxation kernels. The approximate solution of integral equations is based on the direct use of experimental data, previously smoothed and filled with a finer mesh. Thus, solving boundary-value problems of viscoelasticity is reduced to solving elasticity problems at an arbitrary point in time.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):385-394
pages 385-394 views

Existence and uniqueness of the solution of the initialboundary value problem for one-dimensional equations of the dynamics of a compressible viscous mixture

Nogovishcheva V., Prokudin D.

Аннотация

In this paper, an initial-boundary value problem is studied for one-dimensional equations of the dynamics of a compressible viscous mixture. A theorem is proved for the existence and uniqueness of a solution to the initial-boundary value problem without any restrictions on the structure of the viscosity matrix other than the standard physical requirements of symmetry and positive definiteness.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):395-416
pages 395-416 views

Lefschetz formula for nonlocal elliptic problems associated with fibration

Orlova N.

Аннотация

Elliptic operator complexes associated with fibration are considered. The Atiyah-Bott-Lefschetz formula for endomorphisms of such complexes is given. The proof is based on the stationary phase method. Wavefronts of distributions are used to estimate the remainder term.
Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):417-442
pages 417-442 views

Continuous generation population model with discontinuous life cycle characteristics

Perevaryukha A.

Аннотация

Traditionally, continuous models of mathematical biology are focused on the dynamics of interacting populations as stationary homogeneous entities. The state of the populations in the equations is governed by factors common to all individuals \( \forall t,N(t) \): reproductive efficiency, mortality, living space limitations, or resource limitations. Many species exist with nonoverlapping generation sequences, replacing each other under different seasonal conditions. The number of annual generations is an important characteristic of the ecology of a species when occupying a new range. The length of the life cycle and the index of reproductive activity r in adjacent generations of insects in a range vary due to the need for wintering. Fluctuations in these values affect rapid population outbreaks. It is shown that the use of discrete models \( x_{n+1}=\psi(x_n;r)\varphi(x_{n-i})-\Xi \) is unrealistic for fundamental reasons. The appearance of cycles \( p\neq2^i \) in the order of Sharkovsky's theorem is excessive for the analysis of populations and the forecast of mass reproductions of insects. The article proposes a method for organizing models of the conjugate development of a succession of generations in a system of discontinuous differential equations as a sequence of boundary-value problems. The model is event-based redefined to obtain a solution on time intervals corresponding to the conditions of the season. The model taking into account competition and delayed regulation is relevant for the analysis of a sequence of peaks in pest activity, which are characterized by individual extremely numerous generations.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):443-451
pages 443-451 views

Equiconvergence of expansions in root functions of a differential operator and in a trigonometric Fourier series

Rykhlov V.

Аннотация

We consider a non-self-adjoint ordinary differential operator defined on a finite interval by an \( n \)th-order linear differential expression with a nonzero coefficient of the \( (n-1) \)th derivative and two-point Birkhoff regular boundary conditions. We study the uniform equiconvergence of expansions of a given function in a biorthogonal series in eigenfunctions and associated functions (or, briefly, root functions) of this operator and in an ordinary trigonometric Fourier series, as well as an estimate of the difference of the corresponding partial sums (or, briefly, the rate of equiconvergence) under the most general conditions on the expanded function and the coefficient of the  \( (n-1) \)th derivative. We obtain estimates for the difference of the expansions in terms of general (integral) moduli of continuity of the expanded function and the coefficient of the  \( (n-1) \)th derivative uniform inside the fundamental interval. From these estimates, corresponding estimates are derived in the case where moduli of continuity are bounded from above by slowly varying functions and, in particular, by logarithmic functions. Based on this, sufficient conditions for equiconvergence in the indicated cases are formulated. These results are obtained using the author's previously obtained estimate for the difference between the partial sums of expansions of a given function in a biorthogonal series in eigenfunctions and associated functions of the differential operator under consideration and in a modified trigonometric Fourier series, as well as analogues of the Steinhaus theorem. The modification of the trigonometric Fourier series consisted in applying a very specific bounded operator to the ordinary trigonometric Fourier series expressed through the coefficient of the  \( (n-1) \)th derivative and its inverse operator to the expanded function.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):452-477
pages 452-477 views

The second four-electron singlet in the Hubbard impurity model

Tashpulatov S., Parmanova R.

Аннотация

We consider the energy operator of four-electron systems in the Hubbard impurity model and investigate the structure of the essential spectrum and discrete spectra for the second singlet state of the system. It is shown that in the one-dimensional and two-dimensional cases the following situations exist for the essential and discrete spectrum: (a). the essential spectrum of the operator of the second singlet state of four electrons in the Hubbard impurity model consists of a union of eight segments, and the discrete spectrum of the operator consists of six eigenvalues; (b). the essential spectrum of the operator consists of a union of sixteen segments, and the discrete spectrum of the operator consists of fourteen eigenvalues; (c). the essential spectrum of the operator consists of a union of thirteen segments, and the discrete spectrum of the operator consists of nine eigenvalues; (d). the essential spectrum of the operator consists of a union of three segments, and the discrete spectrum of the operator consists of three eigenvalues. In the three-dimensional case the following situations arise: (a). the essential spectrum of an operator consists of unions of eight segments, and the discrete spectrum of the operator consists of six eigenvalues, or the essential spectrum of an operator consists of unions of three segments, and the discrete spectrum of the operator consists of three eigenvalues; (b). the essential spectrum of an operator consists of unions of eight segments, and the discrete spectrum of the operator consists of six eigenvalues; (c). the essential spectrum of an operator consists of unions of sixteen segments, and the discrete spectrum of the operator consists of fourteen eigenvalues; (d). the essential spectrum of an operator consists of unions of three segments, and the discrete spectrum of the operator consists of three eigenvalues.
Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):478-507
pages 478-507 views

Oscillations of a viscous fluid with an inertial free surface

Tsvetkov D.

Аннотация

The problem of small motions and normal oscillations of a viscous fluid is investigated. The free surface contains heavy particles of some substance. These particles do not interact with each other during the free surface oscillations, or their interaction is negligible. The original initial-boundary value problem is reduced to the Cauchy problem for a first-order differential equation in a Hilbert space. After a detailed study of the properties of the operator coefficients, a theorem on the solvability of the resulting Cauchy problem is proved. Based on this, sufficient conditions for the existence of a solution to the initial-boundary value problem describing the evolution of the original hydraulic system are found. Statements regarding the structure of the problem spectrum and the basis property of the system of eigenfunctions are proved.
Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):508-523
pages 508-523 views

Spectral decomposition of self-adjoint operators in Pontryagin and Krein spaces

Strauss V.

Аннотация

We consider a self-adjoint operator acting in a Krein space and possessing an invariant subspace that is maximal nonnegative and decomposes into a direct sum of a uniformly positive (i.e., equivalent to a Hilbert space with respect to the inner pseudoscalar product) and a finite-dimensional neutral subspace. We prove the existence of a difference expression that transforms the moment sequence generated by this operator into a sequence representable as the difference of positive moment sequences. In the case of a cyclic operator, this result is applied to construct a function space in which the operator under study is modeled as the operator of multiplication by an independent variable.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2025;71(3):524-546
pages 524-546 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».