Vol 226 (2023)

Статьи

Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions

Barseghyan V.R., Solodusha S.V.

Abstract

We consider boundary-control problems for a distributed inhomogeneous oscillatory system described by a one-dimensional wave equation with piecewise constant characteristics. We assume that the propagation times for all homogeneous sections are the same. The control is performed by shifting one end with the other end fixed. The initial, intermediate, and final conditions on the deflection function and the velocities of the points of the system are given. An approach to the analytical construction of the boundary control is proposed. The results obtained are illustrated by a specific example. A computational experiment and a comparative analysis were performed.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):3-15
pages 3-15 views

Normalization and quantization of Hamiltonian systems using computer algebra

Belyaeva I.N., Kirichenko I.K., Chekanova N.N.

Abstract

The normalization of Hamiltonian systems is described, i.e., the reduction of a classical Hamilton function using canonical transformations to a simpler form called the Birkhoff–Gustavson normal form. The classical normal form is obtained according to the Born–Jordan and Weyl–McCoy rules, its quantum analogs are constructed, for which the eigenvalue problem is solved, and approximate formulas for the energy spectrum are found. For partial values of the parameters of quantum normal forms, numerical calculations of the lower energy levels were carried out using these formulas.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):16-22
pages 16-22 views

On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor

Berezovskii V.E., Leshchenko S.V., Mikeš J.

Abstract

In this paper, we obtain general equations for canonical first-type almost geodesic mappings of affinely connected spaces under which the Riemann tensor is preserved. These equations are reduced to a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which the general solution of the resulting system of equations depends is established. A particular case of such mappings is considered and examples of almost geodesic mappings of the first type of flat space onto flat space are given.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):23-33
pages 23-33 views

On the discrete Dirichlet problem in a quarter plane

Vasilyev V.B., Khodyreva A.A.

Abstract

In this paper, we consider a discrete elliptic pseudodifferential equation in a quadrant and the related discrete Dirichlet boundary-value problem and discuss conditions for the solvability of a discrete boundary-value problem in discrete analogs of the Sobolev–Slobodetsky spaces. We compare discrete solutions with solutions of the corresponding continual boundary-value problem depending on the discretization parameter.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):34-46
pages 34-46 views

Boundary-value problems with shift and conjugation and corresponding systems of singular integral equations for bianalytic functions

Volodchenkov A.M., Yudenkov A.V.

Abstract

In this paper, we examine a system of singular integral equations with a Carleman shift corresponding to a multielement boundary-value problem for bianalytic functions. The results obtained are applicable to the solution of the main problems of the theory of elasticity in the contact interaction of bodies with various elastic properties.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):47-53
pages 47-53 views

On the application of generalized Bers powers for constructing solutions to the Dirac equation for the motion of a particle in a centrally symmetric field of a nucleus

Gladyshev Y.A., Loshkareva E.A.

Abstract

In this paper, we demonstrate an application of the method of generalized powers for constructing solutions to the Dirac equation of quantum electrodynamics, which governs the motion of an electron in a centrally symmetric electrostatic field.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):54-60
pages 54-60 views

Uniqueness criterion for solutions of inverse problems for abstract singular differential equations

Glushak A.V.

Abstract

For the abstract Euler–Poisson–Darboux equation, an inverse problem with a final redefinition of the second kind is considered. A uniqueness criterion for solutions is established. As an application of the criterion established, uniqueness criteria for solutions of inverse problems for degenerate differential equations are given.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):61-68
pages 61-68 views

Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto–Sivashinsky equation with allowance for dispersion

Kulikov A.N., Kulikov D.A.

Abstract

A periodic boundary-value problem for the dispersive Kuramoto–Sivashinsky equation is considered. The stability of homogeneous equilibria is examined and an analysis of local bifurcations with a change in stability is performed. This analysis is based on the methods of the theory of dynamical systems with an infinite-dimensional space of initial conditions. Sufficient conditions for the presence or absence of invariant manifolds are found. Asymptotic formulas for some solutions are obtained.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):69-79
pages 69-79 views

Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives

Plekhanova M.V., Baybulatova G.D.

Abstract

In this paper, we consider a class of start control problems for systems whose states are described by equations in Banach spaces that are not solvable with respect to the highest Gerasimov–Caputo fractional derivative and depend nonlinearly on lower-order fractional derivatives. A theorem on the existence of an optimal control is obtained. Abstract results are applies to the study of the start control problem for the modified Sobolev equation with a fractional derivative in time.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):80-88
pages 80-88 views

On the solution of the initial-boundary problem in a half-strip for a hyperbolic equation with a mixed derivative

Rykhlov V.S.

Abstract

An initial-boundary problem for an inhomogeneous second-order hyperbolic equation in a half-strip of a plane with constant coefficients and a mixed derivative is studied. This problem describes transverse oscillations of a finite string with fixed ends. We introduce the notion of a classical solution of the initial-boundary problem, prove a uniqueness theorem for the classical solution, and obtain a formula for the solution in the form of a series whose terms are contour integrals containing the initial data of the problem. A definition of a generalized solution is given and finite formulas for this generalized solution are found.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):89-107
pages 89-107 views

Resource networks with dynamic arc durations

Skorokhodov V.A., Erusalimskiy I.M., Abdulrahman H.

Abstract

In this paper, we study a model for the distribution of a resource flow in a resource network with dynamic durations of passage along arcs. A feature of such networks is the dependence of the duration of passage along arcs on discrete time. This feature significantly affects the process of redistribution of resources. It is shown that in the networks considered, the total resource is preserved, while the total resource can be distributed not only over vertices, but also over some arcs. A relation is obtained for the conservation of the total resource in the network. A method for finding the threshold value in a resource network with dynamic durations of passage along arcs is proposed. It is shown that if the total resource is not less than the threshold value in the original network, then in a network with dynamic durations of passage along arcs, there is a unique limiting flow.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):108-119
pages 108-119 views

Scattering problem for one non-self-adjoint Sturm–Liouville operator

Farzullazadeh R.G., Mamedov K.R.

Abstract

The scattering problem is considered for a class of second-order differential equations on a semi-infinite interval with a nonlinear spectral parameter in the boundary condition. The scattering data of the problem are determined and the fundamental equation of the inverse scattering problem is obtained.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):120-126
pages 120-126 views

Quasilinear equations with fractional Gerasimov–Caputo derivative. Sectorial case

Fedorov V.E., Zakharova T.A.

Abstract

We study initial-value problems for quasilinear equations with Gerasimov–Caputo fractional derivatives in Banach spaces whose linear part has an analytic resolving family of operators in the sector. The nonlinear operator is assumed to be a locally Lipschitz operator. We consider equations that are solved with respect to the highest derivative and equations containing a degenerate linear operator acting on the highest derivative. The theorem on the unique solvability of the Cauchy problem proved in the paper is used for the study of the unique solvability of the Showalter–Sidorov problem for degenerate equations. Abstract results are applied to the initial-boundary-value problem for partial differential equations that are not solvable with respect to the highest fractional derivative in time.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):127-137
pages 127-137 views

Integral fuzzy means in the aggregation problem for fuzzy information

Khatskevich V.L.

Abstract

For parametric systems of fuzzy numbers, we introduce and examine a class of aggregation integral operators for aggregation of fuzzy information.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):138-149
pages 138-149 views

Robust sufficient conditions for uniform observability of a linear nonstationary singularly perturbed system

Tsekhan O.B.

Abstract

For a linear nonstationary singularly perturbed system with small coefficients of higher derivatives, we examine the property of uniform observability, which characterizes the possibility of uniquely determining the state of the system at any time t by the values of the output function and its derivatives up to a certain order only at the point t, as well as the property of approximative observability, which means the possibility of accurate estimating the current state of the system without differentiating the output function using δ-sequences.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):150-164
pages 150-164 views

Evidence-based computational experiment in the study of the Cauchy problem for a differential equation with a deviating argument

Shishkin V.A.

Abstract

An approximate solution of the Cauchy problem for a differential equation with a deviating argument is considered. If a solution of the problem exists, then the computational experiment makes it possible to prove the solvability and obtain a guaranteed estimate of the norm of the error for approximate solutions.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):165-169
pages 165-169 views

On the problem associated with the linear peridynamic model

Yuldasheva A.V.

Abstract

The uniqueness and existence of a solution to the Cauchy problem for an integro-differential equation associated with a linear peridynamic model in the mechanics of a rigid body with nonlinear elastic properties are proved.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):170-174
pages 170-174 views

Tables of Correspondence of mathematical specialties from the Nomenclature of scientific specialties of the Higher Attestation Commission and rubrication codes UDC and SRSTI

Bukzhalev E.E., Ovchinnikov A.V., Shironin A.A.

Abstract

The UDC and SRSTI codes corresponding to the areas of research within the framework of scientific specialties determined by the Higher Attestation Commission under the Ministry of Science and Higher Education of the Russian Federation are presented.

Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory. 2023;226(8):175-182
pages 175-182 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».